How to Perform a Transformed Temporal Similarity Search in KDB.AI

This page details how to execute a Transformed TSS search in KDB.AI.

Tip

For the best experience, start by reading about KDB.AI Transformed TSS.

Before we dive in, go to the Understanding Transformed TSS search page to make sure you're familiar with concepts like dimensionality reduction, timeseries windows, and fast moving vectors.

Setup

To perform a Transformed TSS search, make sure you have:

1. Define your schema, indexes and Embedding attribute parameters

To use the Transformed TSS method, the column to be searched needs to have vectors (not scalars) in each entry. For general schema setup details see the Manage Tables page.

For indexes, the dims argument is no longer required, as data in any length will be embedded to the size of the embeddings' dimension.

When the table is created, add an extra embedding_configurations for Python (or embeddingConfigurations for q) attribute to your create function.

2. Embedding Configurations

Option

Description

Type

Required

Default

Allowed values

dims

Reduced dimensionality of the data desired

int

true

8

1,2,3,...

type

Embedding method to use

str

true

None

'tsc'

on_insert_error

The action to take if there are records that would error on insertion. Either reject the batch or skip the erroneous record

string

false

'reject_all'

'reject_all', 'skip_row'

Note

A window fails to insert if the dimensionality is already less than the dimensionality specified by dims.

The selection of dims depends largely on the complexity of the data in the window; the more movement in the window, the larger this number should be.

Python

REST

q

Python

Copy
indexes = [ {"name": "myVectorIndex", "type": "flat"
                "params": {"metric": "L2"},
                "column": "price"}]

embedding_conf = {'price': {"dims": 8, "type": "tsc", "on_insert_error": "reject_all" }}

table_TSC = session.database('default').create_table('tradeTSC', schema, indexes=indexes, embedding_configurations=embedding_conf)

Bash

Copy
curl -X POST http://localhost:8082/api/v2/databases/default/tables \
--header 'Content-Type: application/json' \
--data '{  
"table":"tradeTSC",
"schema": [
    {
    "name": "sym",
    "type": "float"
    },
    {
    "name": "price",
    "type": "floats"
    }
],
"indexes":[
        {
            "name":"myVectorIndex",
            "type": "flat",
            "column":"price",
            "params":{
                "metric": "L2"
            }
    }
    ],
"embeddingConfigurations":{
    "price": {
                "dims": 3, 
                "type": "tsc"
                "on_insert_error": "reject_all" 
                }
        }
    }' 

q

Copy
idx:`name`column`type`params!(enlist `myVectorIndex;enlist `price;enlist `flat;enlist (enlist `metric)!(enlist `L2));
ebd:enlist[`price]!enlist (`dims`type`on_insert_error)!(eDims;`tsc;`skip_row);

p:`database`table`schema`indexes`embeddingConfigurations!(`default;`tradeTSC;mySchema;flip idx;ebd);

3. Follow our index recommendations

Transformed TSS produces the best results using HNSW, IVF, and FLAT indexes. The added layer of product quantisation used in IVFPQ severely impacts the quality of the results returned.

Example: Transformed TSS search

Python

q

Python

Copy
    # In this example we generate dummy market data using PyKX, create an index using the TSC feature exposed by KDB.AI,
    # and search for a pattern of interest in the data

    # Imports

    # KX Dependencies
    import pykx as kx
    import kdbai_client as kdbai

    # Other Dependencies
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from numpy.lib.stride_tricks import sliding_window_view
    from matplotlib.text import Text
    from tqdm import tqdm

    import psutil

    # Ignore Warnings
    import warnings
    warnings.filterwarnings("ignore")


    # Report memory usage of Python + KDB.AI

    def get_memory_usage():
        virtual_memory = psutil.virtual_memory()
        return virtual_memory.used / (1024 ** 2)  # Memory usage in megabytes

    # Generate Dummy Data

    D = 10 # Sliding Window Size
    kx.q['D'] = D
    kx.q('\S 100')
    kx.q('''
    gen_marketTrades: { [num;ticker]
        :marketTrades:: update price:{max(abs -0.5 + x + y;5.0)}\[first price; count[i]?1.0] from 
                            `time xasc ([] time:(.z.d-30)+num?15D00:00:00; 
                            sym:num#ticker; 
                            qty:D*1+num?10;
                            price:num#25.0)
        };
    ''')
    df1 = kx.q('gen_marketTrades[500;`AAA]').pd() # Create records for AAA
    df2 = kx.q('gen_marketTrades[500;`BBB]').pd() # Create records for BBB
    # Concatenate the DataFrames
    df = pd.concat([df1, df2], ignore_index=True)

    print(f"System Memory Usage: {get_memory_usage():.2f} MB")

    # Method 1: Only Windowing - This method is shown as a point of comparison for the TSC method

    # Vector Construction

    # Create the vector column
    vecdf = df.groupby(['sym']).apply(
        lambda x: pd.DataFrame({
            'sym': x['sym'].iloc[0],
            'time': sliding_window_view(x['time'], D)[:, 0],  # Adjusted to keep the last time in the window
            'price': list(sliding_window_view(x['price'], D))
        })
    ).reset_index(drop=True).reset_index()

    vecdf.head()
    print(f"System Memory Usage: {get_memory_usage():.2f} MB")

    # Index Construction
    session = kdbai.Session()

    session.database('default').tables

    schema = [
                {"name": "index", "type": "int64"},
                {"name": "sym", "type": "str"},
                {"name": "time", "type": "datetime64[ns]"},
                {"name": "price", "type": "float32s"},
                ]

    indexes = [ {"name": "myVectorIndex", "type": "flat"
                    "params": {"metric": "L2"},
                    "column": "price"}]

    embedding_conf = {'price': {"dims": 8, "type": "tsc", "on_insert_error": "reject_all" }}

    table_TSC = session.database('default').create_table('tradeTSC', schema, indexes=indexes, embedding_configurations=embedding_conf)

    # Index Population
    table_TSC.insert(vecdf.reset_index(drop=True))

    # Search

    # We take the hundredth vector and use that as our search vector
    q = vecdf['price'][100].tolist()

    res = table_TSC.search(vectors={'myVectorIndex': [q]}, n=10)[0]
    print(res)

    print(f"System Memory Usage: {get_memory_usage():.2f} MB")

q

Copy
    `gw set hopen 8082;
    eDims:3;
    mySchema:flip `name`type!(`id`myDate`time`tag`price`text;`j`d`p`s`F`C);
    idx:`name`column`type`params!(enlist `myVectorIndex;enlist `price;enlist `flat;enlist (enlist `metric)!(enlist `L2));
    ebd:enlist[`price]!enlist (`dims`type`on_insert_error)!(eDims;`tsc;`skip_row);

    // create
    p:`database`table`schema`indexes`embeddingConfigurations!(`default;`tradeTSC;mySchema;flip idx;ebd);
    gw(`createTable;p);
    gw(`query;`database`table!(`default;`tradeTSC));

    // insert
    N:10
    t:([] id:til N; myDate:2015.01.01 + asc N?100j; time:asc N?0p; tag:N?`3; price:(eDims + N?10j)?\:1f; text:{rand[16]?" "} each til N);
    count each t[`price]; // Note that price have various lengths
    r:gw(`insertData;`database`table`payload!(`default;`tradeTSC;t));
    c:gw(`query;`database`table!(`default;`tradeTSC));

    // search
    q:sums neg[0.5]+50?1f;
    tqry:enlist[`myVectorIndex]!enlist enlist q;
    k:5;
    rS:gw(`search;`database`table`vectors`n!(`default;`tradeTSC;tqry;k));
    first rS[`result];

Next steps

Now that you're familiar with how to perform a Transformed TSS search, move on to the following: