How to Use Indexes in KDB.AI

This page describes how to use indexes in KDB.AI and key parameters that can be tailored to specific use cases.

Tip

For the best experience, start by reading about KDB.AI indexes.

Index comparison

Flat

qFlat

HNSW

qHNSW

IVF

IVFPQ

Retrieval speed

Low

Low

Very high

Very high

Moderate

High

Indexing speed

Very high

Very high

Low

Low

Moderate

Moderate

Accuracy

Highest

Highest

Balanced & tunable

Balanced & tunable

Balanced & tunable

Balanced & tunable

Memory used

High

Very low

Very high

Low

High

Moderate

Storage

Memory

Disk

Memory

Disk

Memory

Memory

HNSW, qHNSW, IVF, and IVFPQ can be configured with different hyper-parameters to optimize memory usage, retrieval speed, and accuracy. Generally, HNSW indexes are both fast and accurate but require a lot of memory. On the other hand, IVF indexes tend to be slower and less accurate but are more memory-efficient, especially the product quantized version, IVFPQ.

Flat

The Flat search performs an exhaustive search against all vectors in the search space.

Tip

Use Flat for:

  • Low-dimensional data

  • Small-scale databases

  • Simple querying

  • Real-time data ingestion

  • Low-query volume

Pros

Cons

  • Guarantees 100% recall and precision.

  • Can be slower and less efficient than other types of vector indexes.

You can configure the Flat index with a number of distance metrics. As the search is exhaustive, it finds the exact nearest neighbors without approximations.

Build parameters

Option

Description

Type

Required

Default

dims

Number of dimensions

long

true

8

metric

Distance metric

symbol

false

L2

Python

Copy
indexes = [
    {
        'name': 'flat_index',
        'column': 'embeddings',
        'type': 'flat',
        'params': {'dims': 25}
    }
]   

JSON

Copy
{
    "indexes": [
        {
            "name": "flat_index",
            "column": "embeddings",
            "type": "flat",
            "params": {"dims": 25}
        }
    ]
}   

q

Copy
flatIndex: `name`column`type`params!(`flat_index;`embeddings;`flat;enlist[`dims]!enlist 25)
indexes: enlist flat_index

Create table example for the Flat index

Python

Copy
schema = [
            {'name': 'id', 'pytype': 'str'},
            {'name': 'tag', 'pytype': 'str'},
            {'name': 'text', 'pytype': 'bytes'},
            {'name': 'embeddings', 'type': 'float32s'}
            ]

flat_index = [
            {
                'name': 'vectorIndex',
                'type': 'flat',
                'column': 'embeddings',
                'params': {'dims': 1536, 'metric': 'L2'},
            }
        ]
# get the database connection. Default database name is 'default'
db = session.database('default')

# create the table
table = db.create_table('documents', schema=schema, indexes=flat_index)

Storage: the Flat index is stored in-memory.

qFlat

The qFlat search performs an exhaustive search against all vectors in the search space.

Tip

The qFlat index is the Flat index stored on-disk instead of in-memory. Use qFlat for:

  • Situations when you would use Flat, but memory is limited

  • Low-dimensional data

  • Small-scale databases

  • Simple querying

  • Real-time data ingestion

  • Low-query volume

Pros

Cons

  • Guarantees 100% recall and precision.

  • Useful when memory is limited.

  • Can be slower and less efficient than other types of vector indexes.

You can configure the qFlat index with a number of distance metrics. As the search is exhaustive, it finds the exact nearest neighbors without approximations.

Build parameters

Option

Description

Type

Required

Default

dims

Number of dimensions

long

true

8

metric

Distance metric

symbol

false

L2

Search parameters

At search time, qFlat can either return n nearest neighbors, or all neighbors that fall within a specified range. The range option is applicable to qFlat indexes only.

  • index_options at search()

Option

Description

Type

Required

Default

n

Number of nearest neighbors to return

int

false

None

range

Range within which the nearest neighbors are returned

float

false

None

Python

Copy
indexes = [
    {
        'name': 'qflat_index',
        'column': 'embeddings',
        'type': 'qFlat',
        'params': {'dims': 25}
    }
]   

JSON

Copy
{
    "indexes": [
        {
            "name": "qflat_index",
            "column": "embeddings",
            "type": "qFlat",
            "params": {"dims": 25}
        }
    ]
}   

q

Copy
qFlatIndex: `name`column`type`params!(`qflat_index;`embeddings;`qFlat;enlist[`dims]!enlist 25)
indexes: enlist qFlatIndex 

Create table example for the qFlat index

Python

Copy
schema = [
            {'name': 'id', 'pytype': 'str'},
            {'name': 'tag', 'pytype': 'str'},
            {'name': 'text', 'pytype': 'bytes'},
            {'name': 'embeddings', 'type': 'float32s'}
        ]

qflat_index = [
            {
                'name': 'vectorIndex',
                'type': 'qFlat',
                'column': 'embeddings',
                'params': {'dims': 25, 'metric': 'L2'},
            }
        ]
# get the database connection. Default database name is 'default'
db = session.database('default')

# create the table
table = db.create_table('documents', schema=schema, indexes=qflat_index)

Example of a range search for the qFlat index

Python

Copy
schema = [
            {'name': 'id', 'pytype': 'str'},
            {'name': 'tag', 'pytype': 'str'},
            {'name': 'text', 'pytype': 'bytes'},
            {'name': 'embeddings', 'type': 'float32s'}
        ]

qflat_index = [
            {
                'name': 'vectorIndex',
                'type': 'qFlat',
                'column': 'embeddings',
                'params': {'dims': 25, 'metric': 'L2'},
            }
        ]
# get the database connection. Default database name is 'default'
db = session.database('default')

# create the table
table = db.create_table('documents', schema=schema, indexes=qflat_index)

# Perform a more precise search using the range option
table.search(vectors={vectorIndex: [[1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0]]}, range=5.5)

HNSW

A Hierarchical Navigable Small Worlds (HNSW) index establishes connections between vertices in the graph based on their distances. These links are instrumental in enabling efficient traversal and navigation through the hierarchical graph during the search process.

Tip

Use HNSW for:

  • Medium-Large scale datasets

  • Good accuracy

  • High-dimensional data (hundred or thousands of dimensions)

  • Efficient nearest-neighbor search for:

    • recommendation systems

    • content-based image retrieval

    • NLP tasks

  • Approximate nearest-neighbor search when looking for cost reduction

  • Large-scale databases

  • Real-time and dynamic data

  • Highly resourced environments (distributed and parallel computing)

Pros

Cons

  • More efficient than flat or qFlat.

  • Simple to configure and scalable for real-time and dynamic data.

  • Can be small inaccuracies in results.

  • Uses quite a lot of memory.

  • Tuning for highest accuracy performance is computationally expensive.

Use the HNSW index to search and navigate through the layers of a graph to find increasingly similar data in that graph. This approach is extremely efficient with search performance a measure of the complexity of the graph.

Build parameters

Option

Description

Type

Required

Default

dims

Number of dimensions

long

true

8

efConstruction           

Number of nodes at each step of the graph construction.

int

false

8

M

Valence of each node in graph

int

false

8

metric

Distance metric

symbol

false

L2

Search parameters

  • index_options at search() (and dense_index_options at hybrid_search())

Option

Description

Type

Required

Default

efSearch

Nodes considered at each step (search)

int

false

8

For optimal balance between accuracy and performance, choose a value of 2 - 10 times your n for efSearch. As a rule, increase the value for higher accuracy at the cost of slower search times.

Note

For coding example of using the argument index_options at search(), refer to the Python API Client documentation.

Python

Copy
indexes = [
    {
        'name': 'hnsw_index',
        'column': 'embeddings',
        'type': 'hnsw',
        'params': { 'dims': 25, 'efConstruction': 8, 'M': 8, 'metric': 'L2'}}
    }
]   

JSON

Copy
{
    "indexes": [
        {
            "name": "hnsw_index",
            "column": "embeddings",
            "type": "hnsw",
            "params": { "dims": 25, "efConstruction": 8, "M": 8, "metric": "L2"}}
        }
    ]
}   

q

Copy
hnswIndex: `name`column`type`params!(`hnsw_index;`embeddings;`hnsw;`dims`M`efConstruction!(25;8;8))
indexes: enlist hnswIndex 

Create table example for the HNSW index

Python

Copy
schema = [
            {'name': 'id', 'pytype': 'str'},
            {'name': 'tag', 'pytype': 'str'},
            {'name': 'text', 'pytype': 'bytes'},
            {'name': 'embeddings', 'type': 'float32s'}
        ]

hnsw_index = [
            {
                'name': 'vectorIndex',
                'type': 'hnsw',
                'column': 'embeddings',
                'params': { 'dims': 25,
                            'efConstruction': 8,
                            'M': 8,
                            'metric': 'L2'},
            }
        ]
# get the database connection. Default database name is 'default'
db = session.database('default')

# create the table
table = db.create_table('documents', schema=schema, indexes=hnsw_index)

Tip

Indexes like HNSW require a lot of memory and might cause issues on KDB.AI Cloud instances. If memory runs low, we recommend alternative indexes like qFlat, qHNSW, or IVF-PQ.

qHNSW

The q Hierarchical Navigable Small Worlds (qHNSW) index establishes connections between vertices in the graph based on their distances. These links are instrumental in enabling efficient traversal and navigation through the hierarchical graph during the search process.

Use the HNSW index to search and navigate through the layers of a graph to find increasingly similar data in that graph. This approach is extremely efficient with search performance a measure of the complexity of the graph.

Tip

The qHNSW index is the HNSW index stored on-disk instead of in-memory. Use qHNSW for:

  • Situations when you would use HNSW, but memory is limited

  • Medium-Large scale datasets

  • Good accuracy

  • High-dimensional data (hundred or thousands of dimensions)

  • Efficient nearest neighbor search for:

    • recommendation systems

    • content-based image retrieval

    • NLP tasks

  • Approximate nearest neighbor search when looking for cost reduction

  • Large-scale databases

  • Real-time and dynamic data

  • Highly resourced environments (distributed and parallel computing)

Pros

Cons

  • More efficient than flat or qFlat.

  • Simple to configure.

  • Scalable for real-time and dynamic data.

  • Useful when memory is limited.

  • Lower accuracy than similarity search and IVFPQ.

Build parameters

Option

Description

Type

Required

Default

dims

Number of dimensions

long

true

8

efConstruction            

Number of nodes at each step of the graph construction.

int

false

8

M

Valence of each node in graph

int

false

8

metric

Distance metric

symbol

false

L2

mmapLevel

Level of memory mapping. Accepted values:
- 0 for both vectors and node connection in memory;
- 1 for memory-mapped vectors and in-memory nodes ;
- 2 for both vectors and node connections memory mapped.

int

No

1

Search parameters

  • index_options at search() (and dense_index_options at hybrid_search())

Option

Description

Type

Required

Default

efSearch

Nodes considered at each step (search)

int

false

8

For optimal balance between accuracy and performance, choose a value of 2 - 10 times your n for efSearch. As a rule, increase the value for higher accuracy at the cost of slower search times.

Note

For coding example of using the argument index_options at search(), refer to the Python API Client documentation.

Python

Copy
index = [
    {
        'name': 'qhnsw_index',
        'column': 'embeddings',
        'type': 'qHnsw',
        'params': { 'dims': 25, 'efConstruction': 8, 'M': 8, 'metric': 'L2'}}
    }
]   

JSON

Copy
{
    "indexes": [
        {
            "name": "qhnsw_index",
            "column": "embeddings",
            "type": "qHnsw",
            "params": { "dims": 25, "efConstruction": 8, "M": 8, "metric": "L2"}}
        }
    ]
}   

q

Copy
qhnswIndex: `name`column`type`params!(`qhnsw_index;`embeddings;`qHnsw;`dims`M`efConstruction!(25;8;8))
indexes: enlist qhnswIndex 

Create table example for the qHnsw index

Python

Copy
schema = [
            {'name': 'id', 'pytype': 'str'},
            {'name': 'tag', 'pytype': 'str'},
            {'name': 'text', 'pytype': 'bytes'},
            {'name': 'embeddings', 'type': 'float32s'}
        ]

qhnsw_index = [
            {
                'name': 'vectorIndex',
                'type': 'qHnsw',
                'column': 'embeddings',
                'params': {
                            'dims': 25,
                            'efConstruction': 8,
                            'M': 8,
                            'metric': 'L2'},
            }
        ]
# get the database connection. Default database name is 'default'
db = session.database('default')

# create the table
table = db.create_table('documents', schema=schema, indexes=qhnsw_index)

IVF

When using an Inverted File (IVF) search, first you train the index on a set of points that are used to generate cluster centroids using a k-means algorithm.

Tip

Use IVF for:

  • Large-scale datasets

  • High-dimensional data (hundreds or thousands of dimensions)

  • Fast searches

Pros

Cons

  • More efficient than flat or qFlat.

  • Lower accuracy than brute force search.

The data is not partitioned into a cluster based on centroid distance. The search is performed by running a flat search against the most relevant clusters. As only a subset of the data is searched, the results are returned much quicker, but as a consequence can be less accurate compared to flat searches..

Build parameters

Option

Description

Type

Required

Default

nclusters      

Number of clusters into which the data is divided.

int

false

8

metric

Distance metric

symbol

false

L2

Search parameters

  • index_options at search() (and dense_index_options at hybrid_search())

Option

Description

Type

Required

Default

clusters    

The number of clusters to be traversed in the search

int

false

2

Note

Training is required to initialize the IVF index.

Python

Copy
indexes = [
    {
        'name': 'ivf_index',
        'column': 'embeddings',
        'type': 'ivf',
        'params': { 'nclusters': 10, 'metric': 'CS'}}
    }
]   

JSON

Copy
{
    "indexes": [
        {
            "name": "ivf_index",
            "column": "embeddings",
            "type": "ivf",
            "params": { "nclusters": 10, "metric": "CS"}}
        }
    ]
}   

q

Copy
ivfIndex: `name`column`type`params!(`ivf_index;`embeddings;`ivf;enlist[`nclusters]!enlist 10)
indexes: enlist ivfIndex 

Create table example for the IVF index

Python

Copy
schema = [
            {'name': 'id', 'pytype': 'str'},
            {'name': 'tag', 'pytype': 'str'},
            {'name': 'text', 'pytype': 'bytes'},
            {'name': 'embeddings', 'type': 'float32s'}
        ]

ivf_index = [
            {
                'name': 'vectorIndex',
                'type': 'ivf',
                'column': 'embeddings',
                'params': {'nclusters': 10, 'metric': 'CS'},
            }
        ] 
# get the database connection. Default database name is 'default'
db = session.database('default')

# create the table
table = db.create_table('documents', schema=schema, indexes=ivf_index)

IVFPQ

You can compress input data using the product quantization method before applying the IVF schema above. This is known as Inverted File Product Quantization (IVFPQ). IVFPQ can greatly reduce the size of the index held in memory and improve search speeds.

Tip

Use IVFPQ for:

  • Large-scale datasets

  • Situations where accuracy is not critical

  • Memory efficiency

Pros

Cons

  • More efficient than flat or qFlat.

  • Very memory efficient.

  • Lower accuracy than standard IVF index with similar parameters due to compression.

For configuring the IVFPQ index to balance between search accuracy and efficiency, use these parameters:

Build parameters

Option

Description

Type

Required

Default

nclusters      

Number of clusters into which the data is divided. Clustering helps to reduce the search space by grouping similar data points together.

int

false

8

nsplits

Number of splits or partitions of the data. Each split is quantized separately, which helps in managing large datasets more efficiently.

int

false

8

nbits

Number of bits used for encoding each sub-vector in the product quantization process. It determines the precision of the quantization.

int

false

8

metric

Distance metric

str

false

L2

Search parameters

  • index_options at search() (and dense_index_options at hybrid_search())

Option

Description

Type

Required

Default

clusters

The number of clusters to be traversed in the search

int

false

2

Note

Training is required, to initialize the IVFPQ index.

Python

Copy
indexes = [
    {
        'name': 'ivf_index',
        'column': 'embeddings',
        'type': 'ivf',
        'params': {'nclusters': 10, 'metric': 'CS', 'nsplits': 8, 'nbits': 8}}
    }
]   

JSON

Copy
{
    "indexes": [
        {
            "name": "ivf_index",
            "column": "embeddings",
            "type": "ivf",
            "params": {"nclusters": 50, "metric": "CS", "nsplits": 8, "nbits": 8}}
        }
    ]
}   

q

Copy
ivfpqIndex: `name`column`type`params!(`ivfpq_index;`embeddings;`ivfpq;`nclusters`nsplits`nbits!(50;8;8))
indexes: enlist ivfpqIndex 

Create table example for the IVFPQ index

Python

Copy
schema = [
            {'name': 'id', 'pytype': 'str'},
            {'name': 'tag', 'pytype': 'str'},
            {'name': 'text', 'pytype': 'bytes'},
            {'name': 'embeddings', 'type': 'float32s'}
        ]

ivfpq_index = [
            {
                'name': 'vectorIndex',
                'type': 'ivfpq',
                'column': 'embeddings',
                'params': { 'metric': 'L2',
                            'nclusters': 50,
                            'nsplits': 8,
                            'nbits': 8},
            }
        ]
# get the database connection. Default database name is 'default'
db = session.database('default')

# create the table
table = db.create_table('documents', schema=schema, indexes=ivfpq_index)

Tip

Tips for choosing the right number of clusters (nclusters) for IVF and IVFPQ:

  • Dataset characteristics: The size and distribution of your dataset play a crucial role. Larger datasets typically benefit from more clusters, which can enhance search precision but also require more memory and longer indexing times.

  • Balancing act: More clusters can lead to finer partitioning, improving search accuracy. However, this comes at the cost of increased memory usage and slower indexing. You'll need to find a balance that suits your needs.

  • Iterative testing: Start with a smaller number of clusters and incrementally increase them, observing the impact on performance.

  • Training vector quantity: Ensure you have enough training vectors to capture the diversity of your dataset. Depending on its complexity, you might need anywhere from a few thousand to tens of thousands of vectors.

  • Performance metrics: Use metrics such as recall and precision to evaluate different configurations. This will help you understand the trade-offs and select the best setup for your specific use case.

How to choose training data and vector embeddings

When selecting training data for your Inverted File Index (IVF), it's crucial to use a subset of your actual dataset rather than randomly generated data. This ensures the training vectors accurately represent the characteristics of your dataset, leading to a more effective and tailored index.

For vector embeddings, especially in the context of Transformed TSS embeddings, you should train on the compressed embeddings. These are the dimensions that will be stored in the index, making them the most relevant for training purposes.

By carefully selecting representative training data and focusing on the compressed embeddings, you can significantly enhance the performance and accuracy of your IVF.

Multiple indexes

In KDB.AI, you can optimize your queries by adding multiple indexes to a single table (at table creation time), each of which can be associated with an embedding column. This feature is particularly useful for handling diverse datasets and improving query performance. Here’s a breakdown of how to use multiple indexes:

  • Multiple indexes can share the same embedding column, so there’s no need to duplicate the embeddings, saving storage and maintaining efficiency. For instance, you might have:

    • A fast HNSW index with parameters m: 8 and ef construction: 16 for quick searches.

    • A more accurate but slower HNSW index with parameters m: 64 and ef construction: 512.

  • Assign weights to different indexes during searches to fine-tune result ranking based on the importance of various data aspects. This feature allows for more precise and relevant search outcomes.

WARNING

The sum of all weights must be equal to 1.