How to Use Indexes in KDB.AI
This page describes how to use indexes in KDB.AI and key parameters that can be tailored to specific use cases.
Tip
For the best experience, start by reading about KDB.AI indexes.
Index comparison
Flat |
qFlat |
HNSW |
qHNSW |
IVF |
IVFPQ |
|
---|---|---|---|---|---|---|
Retrieval speed |
Low |
Low |
Very high |
Very high |
Moderate |
High |
Indexing speed |
Very high |
Very high |
Low |
Low |
Moderate |
Moderate |
Accuracy |
Highest |
Highest |
Balanced & tunable |
Balanced & tunable |
Balanced & tunable |
Balanced & tunable |
Memory used |
High |
Very low |
Very high |
Low |
High |
Moderate |
Storage |
Memory |
Disk |
Memory |
Disk |
Memory |
Memory |
HNSW, qHNSW, IVF, and IVFPQ can be configured with different hyper-parameters to optimize memory usage, retrieval speed, and accuracy. Generally, HNSW indexes are both fast and accurate but require a lot of memory. On the other hand, IVF indexes tend to be slower and less accurate but are more memory-efficient, especially the product quantized version, IVFPQ.
Flat
The Flat search performs an exhaustive search against all vectors in the search space.
Tip
Use Flat for:
-
Low-dimensional data
-
Small-scale databases
-
Simple querying
-
Real-time data ingestion
-
Low-query volume
Pros
Cons
-
Guarantees 100% recall and precision.
-
Can be slower and less efficient than other types of vector indexes.
You can configure the Flat index with a number of distance metrics. As the search is exhaustive, it finds the exact nearest neighbors without approximations.
Build parameters
Option |
Description |
Type |
Required |
Default |
---|---|---|---|---|
dims |
Number of dimensions |
long |
true |
8 |
metric |
Distance metric |
symbol |
false |
L2 |
Python
indexes = [
{
'name': 'flat_index',
'column': 'embeddings',
'type': 'flat',
'params': {'dims': 25}
}
]
JSON
{
"indexes": [
{
"name": "flat_index",
"column": "embeddings",
"type": "flat",
"params": {"dims": 25}
}
]
}
q
flatIndex: `name`column`type`params!(`flat_index;`embeddings;`flat;enlist[`dims]!enlist 25)
indexes: enlist flat_index
Create table example for the Flat index
Python
schema = [
{'name': 'id', 'pytype': 'str'},
{'name': 'tag', 'pytype': 'str'},
{'name': 'text', 'pytype': 'bytes'},
{'name': 'embeddings', 'type': 'float32s'}
]
flat_index = [
{
'name': 'vectorIndex',
'type': 'flat',
'column': 'embeddings',
'params': {'dims': 1536, 'metric': 'L2'},
}
]
# get the database connection. Default database name is 'default'
db = session.database('default')
# create the table
table = db.create_table('documents', schema=schema, indexes=flat_index)
Storage: the Flat index is stored in-memory.
qFlat
The qFlat search performs an exhaustive search against all vectors in the search space.
Tip
The qFlat index is the Flat index stored on-disk instead of in-memory. Use qFlat for:
-
Situations when you would use Flat, but memory is limited
-
Low-dimensional data
-
Small-scale databases
-
Simple querying
-
Real-time data ingestion
-
Low-query volume
Pros
Cons
-
Guarantees 100% recall and precision.
-
Useful when memory is limited.
-
Can be slower and less efficient than other types of vector indexes.
You can configure the qFlat index with a number of distance metrics. As the search is exhaustive, it finds the exact nearest neighbors without approximations.
Build parameters
Option |
Description |
Type |
Required |
Default |
---|---|---|---|---|
dims |
Number of dimensions |
long |
true |
8 |
metric |
Distance metric |
symbol |
false |
L2 |
Search parameters
At search time, qFlat can either return n
nearest neighbors, or all neighbors that fall within a specified range
. The range
option is applicable to qFlat indexes only.
-
index_options
atsearch()
Option |
Description |
Type |
Required |
Default |
---|---|---|---|---|
|
Number of nearest neighbors to return |
int |
false |
None |
|
Range within which the nearest neighbors are returned |
float |
false |
None |
Python
indexes = [
{
'name': 'qflat_index',
'column': 'embeddings',
'type': 'qFlat',
'params': {'dims': 25}
}
]
JSON
{
"indexes": [
{
"name": "qflat_index",
"column": "embeddings",
"type": "qFlat",
"params": {"dims": 25}
}
]
}
q
qFlatIndex: `name`column`type`params!(`qflat_index;`embeddings;`qFlat;enlist[`dims]!enlist 25)
indexes: enlist qFlatIndex
Create table example for the qFlat index
Python
schema = [
{'name': 'id', 'pytype': 'str'},
{'name': 'tag', 'pytype': 'str'},
{'name': 'text', 'pytype': 'bytes'},
{'name': 'embeddings', 'type': 'float32s'}
]
qflat_index = [
{
'name': 'vectorIndex',
'type': 'qFlat',
'column': 'embeddings',
'params': {'dims': 25, 'metric': 'L2'},
}
]
# get the database connection. Default database name is 'default'
db = session.database('default')
# create the table
table = db.create_table('documents', schema=schema, indexes=qflat_index)
Example of a range
search for the qFlat index
Python
schema = [
{'name': 'id', 'pytype': 'str'},
{'name': 'tag', 'pytype': 'str'},
{'name': 'text', 'pytype': 'bytes'},
{'name': 'embeddings', 'type': 'float32s'}
]
qflat_index = [
{
'name': 'vectorIndex',
'type': 'qFlat',
'column': 'embeddings',
'params': {'dims': 25, 'metric': 'L2'},
}
]
# get the database connection. Default database name is 'default'
db = session.database('default')
# create the table
table = db.create_table('documents', schema=schema, indexes=qflat_index)
# Perform a more precise search using the range option
table.search(vectors={vectorIndex: [[1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0]]}, range=5.5)
HNSW
A Hierarchical Navigable Small Worlds (HNSW) index establishes connections between vertices in the graph based on their distances. These links are instrumental in enabling efficient traversal and navigation through the hierarchical graph during the search process.
Tip
Use HNSW for:
-
Medium-Large scale datasets
-
Good accuracy
-
High-dimensional data (hundred or thousands of dimensions)
-
Efficient nearest-neighbor search for:
recommendation systems
content-based image retrieval
NLP tasks
-
Approximate nearest-neighbor search when looking for cost reduction
-
Large-scale databases
-
Real-time and dynamic data
-
Highly resourced environments (distributed and parallel computing)
Pros
Cons
-
More efficient than flat or qFlat.
-
Simple to configure and scalable for real-time and dynamic data.
-
Can be small inaccuracies in results.
-
Uses quite a lot of memory.
-
Tuning for highest accuracy performance is computationally expensive.
Use the HNSW index to search and navigate through the layers of a graph to find increasingly similar data in that graph. This approach is extremely efficient with search performance a measure of the complexity of the graph.
Build parameters
Option |
Description |
Type |
Required |
Default |
---|---|---|---|---|
dims |
Number of dimensions |
long |
true |
8 |
efConstruction |
Number of nodes at each step of the graph construction. |
int |
false |
8 |
M |
Valence of each node in graph |
int |
false |
8 |
metric |
Distance metric |
symbol |
false |
L2 |
Search parameters
-
index_options
atsearch()
(anddense_index_options
athybrid_search()
)
Option |
Description |
Type |
Required |
Default |
---|---|---|---|---|
|
Nodes considered at each step (search) |
int |
false |
8 |
For optimal balance between accuracy and performance, choose a value of 2 - 10 times your n
for efSearch
. As a rule, increase the value for higher accuracy at the cost of slower search times.
Note
For coding example of using the argument index_options at search()
, refer to the Python API Client documentation.
Python
indexes = [
{
'name': 'hnsw_index',
'column': 'embeddings',
'type': 'hnsw',
'params': { 'dims': 25, 'efConstruction': 8, 'M': 8, 'metric': 'L2'}}
}
]
JSON
{
"indexes": [
{
"name": "hnsw_index",
"column": "embeddings",
"type": "hnsw",
"params": { "dims": 25, "efConstruction": 8, "M": 8, "metric": "L2"}}
}
]
}
q
hnswIndex: `name`column`type`params!(`hnsw_index;`embeddings;`hnsw;`dims`M`efConstruction!(25;8;8))
indexes: enlist hnswIndex
Create table example for the HNSW index
Python
schema = [
{'name': 'id', 'pytype': 'str'},
{'name': 'tag', 'pytype': 'str'},
{'name': 'text', 'pytype': 'bytes'},
{'name': 'embeddings', 'type': 'float32s'}
]
hnsw_index = [
{
'name': 'vectorIndex',
'type': 'hnsw',
'column': 'embeddings',
'params': { 'dims': 25,
'efConstruction': 8,
'M': 8,
'metric': 'L2'},
}
]
# get the database connection. Default database name is 'default'
db = session.database('default')
# create the table
table = db.create_table('documents', schema=schema, indexes=hnsw_index)
Tip
Indexes like HNSW require a lot of memory and might cause issues on KDB.AI Cloud instances. If memory runs low, we recommend alternative indexes like qFlat, qHNSW, or IVF-PQ.
qHNSW
The q Hierarchical Navigable Small Worlds (qHNSW) index establishes connections between vertices in the graph based on their distances. These links are instrumental in enabling efficient traversal and navigation through the hierarchical graph during the search process.
Use the HNSW index to search and navigate through the layers of a graph to find increasingly similar data in that graph. This approach is extremely efficient with search performance a measure of the complexity of the graph.
Tip
The qHNSW index is the HNSW index stored on-disk instead of in-memory. Use qHNSW for:
-
Situations when you would use HNSW, but memory is limited
-
Medium-Large scale datasets
-
Good accuracy
-
High-dimensional data (hundred or thousands of dimensions)
-
Efficient nearest neighbor search for:
-
recommendation systems
-
content-based image retrieval
-
NLP tasks
-
-
Approximate nearest neighbor search when looking for cost reduction
-
Large-scale databases
-
Real-time and dynamic data
-
Highly resourced environments (distributed and parallel computing)
Pros
Cons
-
More efficient than flat or qFlat.
-
Simple to configure.
-
Scalable for real-time and dynamic data.
-
Useful when memory is limited.
-
Lower accuracy than similarity search and IVFPQ.
Build parameters
Option |
Description |
Type |
Required |
Default |
---|---|---|---|---|
dims |
Number of dimensions |
long |
true |
8 |
efConstruction |
Number of nodes at each step of the graph construction. |
int |
false |
8 |
M |
Valence of each node in graph |
int |
false |
8 |
metric |
Distance metric |
symbol |
false |
L2 |
mmapLevel |
Level of memory mapping. Accepted values: |
int |
No |
1 |
Search parameters
-
index_options
atsearch()
(anddense_index_options
athybrid_search()
)
Option |
Description |
Type |
Required |
Default |
---|---|---|---|---|
|
Nodes considered at each step (search) |
int |
false |
8 |
For optimal balance between accuracy and performance, choose a value of 2 - 10 times your n
for efSearch
. As a rule, increase the value for higher accuracy at the cost of slower search times.
Note
For coding example of using the argument index_options at search()
, refer to the Python API Client documentation.
Python
index = [
{
'name': 'qhnsw_index',
'column': 'embeddings',
'type': 'qHnsw',
'params': { 'dims': 25, 'efConstruction': 8, 'M': 8, 'metric': 'L2'}}
}
]
JSON
{
"indexes": [
{
"name": "qhnsw_index",
"column": "embeddings",
"type": "qHnsw",
"params": { "dims": 25, "efConstruction": 8, "M": 8, "metric": "L2"}}
}
]
}
q
qhnswIndex: `name`column`type`params!(`qhnsw_index;`embeddings;`qHnsw;`dims`M`efConstruction!(25;8;8))
indexes: enlist qhnswIndex
Create table example for the qHnsw index
Python
schema = [
{'name': 'id', 'pytype': 'str'},
{'name': 'tag', 'pytype': 'str'},
{'name': 'text', 'pytype': 'bytes'},
{'name': 'embeddings', 'type': 'float32s'}
]
qhnsw_index = [
{
'name': 'vectorIndex',
'type': 'qHnsw',
'column': 'embeddings',
'params': {
'dims': 25,
'efConstruction': 8,
'M': 8,
'metric': 'L2'},
}
]
# get the database connection. Default database name is 'default'
db = session.database('default')
# create the table
table = db.create_table('documents', schema=schema, indexes=qhnsw_index)
IVF
When using an Inverted File (IVF) search, first you train the index on a set of points that are used to generate cluster centroids using a k-means algorithm.
Tip
Use IVF for:
-
Large-scale datasets
-
High-dimensional data (hundreds or thousands of dimensions)
-
Fast searches
Pros
Cons
-
More efficient than flat or qFlat.
-
Lower accuracy than brute force search.
The data is not partitioned into a cluster based on centroid distance. The search is performed by running a flat search against the most relevant clusters. As only a subset of the data is searched, the results are returned much quicker, but as a consequence can be less accurate compared to flat searches..
Build parameters
Option |
Description |
Type |
Required |
Default |
---|---|---|---|---|
nclusters |
Number of clusters into which the data is divided. |
int |
false |
8 |
metric |
Distance metric |
symbol |
false |
L2 |
Search parameters
-
index_options
atsearch()
(anddense_index_options
athybrid_search()
)
Option |
Description |
Type |
Required |
Default |
---|---|---|---|---|
clusters |
The number of clusters to be traversed in the search |
int |
false |
2 |
Note
Training is required to initialize the IVF index.
Python
indexes = [
{
'name': 'ivf_index',
'column': 'embeddings',
'type': 'ivf',
'params': { 'nclusters': 10, 'metric': 'CS'}}
}
]
JSON
{
"indexes": [
{
"name": "ivf_index",
"column": "embeddings",
"type": "ivf",
"params": { "nclusters": 10, "metric": "CS"}}
}
]
}
q
ivfIndex: `name`column`type`params!(`ivf_index;`embeddings;`ivf;enlist[`nclusters]!enlist 10)
indexes: enlist ivfIndex
Create table example for the IVF index
Python
schema = [
{'name': 'id', 'pytype': 'str'},
{'name': 'tag', 'pytype': 'str'},
{'name': 'text', 'pytype': 'bytes'},
{'name': 'embeddings', 'type': 'float32s'}
]
ivf_index = [
{
'name': 'vectorIndex',
'type': 'ivf',
'column': 'embeddings',
'params': {'nclusters': 10, 'metric': 'CS'},
}
]
# get the database connection. Default database name is 'default'
db = session.database('default')
# create the table
table = db.create_table('documents', schema=schema, indexes=ivf_index)
IVFPQ
You can compress input data using the product quantization method before applying the IVF schema above. This is known as Inverted File Product Quantization (IVFPQ). IVFPQ can greatly reduce the size of the index held in memory and improve search speeds.
Tip
Use IVFPQ for:
-
Large-scale datasets
-
Situations where accuracy is not critical
-
Memory efficiency
Pros
Cons
-
More efficient than flat or qFlat.
-
Very memory efficient.
-
Lower accuracy than standard IVF index with similar parameters due to compression.
For configuring the IVFPQ index to balance between search accuracy and efficiency, use these parameters:
Build parameters
Option |
Description |
Type |
Required |
Default |
---|---|---|---|---|
nclusters |
Number of clusters into which the data is divided. Clustering helps to reduce the search space by grouping similar data points together. |
int |
false |
8 |
nsplits |
Number of splits or partitions of the data. Each split is quantized separately, which helps in managing large datasets more efficiently. |
int |
false |
8 |
nbits |
Number of bits used for encoding each sub-vector in the product quantization process. It determines the precision of the quantization. |
int |
false |
8 |
metric |
Distance metric |
str |
false |
L2 |
Search parameters
-
index_options
atsearch()
(anddense_index_options
athybrid_search()
)
Option |
Description |
Type |
Required |
Default |
---|---|---|---|---|
|
The number of clusters to be traversed in the search |
int |
false |
2 |
Note
Training is required, to initialize the IVFPQ index.
Python
indexes = [
{
'name': 'ivf_index',
'column': 'embeddings',
'type': 'ivf',
'params': {'nclusters': 10, 'metric': 'CS', 'nsplits': 8, 'nbits': 8}}
}
]
JSON
{
"indexes": [
{
"name": "ivf_index",
"column": "embeddings",
"type": "ivf",
"params": {"nclusters": 50, "metric": "CS", "nsplits": 8, "nbits": 8}}
}
]
}
q
ivfpqIndex: `name`column`type`params!(`ivfpq_index;`embeddings;`ivfpq;`nclusters`nsplits`nbits!(50;8;8))
indexes: enlist ivfpqIndex
Create table example for the IVFPQ index
Python
schema = [
{'name': 'id', 'pytype': 'str'},
{'name': 'tag', 'pytype': 'str'},
{'name': 'text', 'pytype': 'bytes'},
{'name': 'embeddings', 'type': 'float32s'}
]
ivfpq_index = [
{
'name': 'vectorIndex',
'type': 'ivfpq',
'column': 'embeddings',
'params': { 'metric': 'L2',
'nclusters': 50,
'nsplits': 8,
'nbits': 8},
}
]
# get the database connection. Default database name is 'default'
db = session.database('default')
# create the table
table = db.create_table('documents', schema=schema, indexes=ivfpq_index)
Tip
Tips for choosing the right number of clusters (nclusters
) for IVF and IVFPQ:
-
Dataset characteristics: The size and distribution of your dataset play a crucial role. Larger datasets typically benefit from more clusters, which can enhance search precision but also require more memory and longer indexing times.
-
Balancing act: More clusters can lead to finer partitioning, improving search accuracy. However, this comes at the cost of increased memory usage and slower indexing. You'll need to find a balance that suits your needs.
-
Iterative testing: Start with a smaller number of clusters and incrementally increase them, observing the impact on performance.
-
Training vector quantity: Ensure you have enough training vectors to capture the diversity of your dataset. Depending on its complexity, you might need anywhere from a few thousand to tens of thousands of vectors.
-
Performance metrics: Use metrics such as recall and precision to evaluate different configurations. This will help you understand the trade-offs and select the best setup for your specific use case.
How to choose training data and vector embeddings
When selecting training data for your Inverted File Index (IVF), it's crucial to use a subset of your actual dataset rather than randomly generated data. This ensures the training vectors accurately represent the characteristics of your dataset, leading to a more effective and tailored index.
For vector embeddings, especially in the context of Transformed TSS embeddings, you should train on the compressed embeddings. These are the dimensions that will be stored in the index, making them the most relevant for training purposes.
By carefully selecting representative training data and focusing on the compressed embeddings, you can significantly enhance the performance and accuracy of your IVF.
Multiple indexes
In KDB.AI, you can optimize your queries by adding multiple indexes to a single table (at table creation time), each of which can be associated with an embedding column. This feature is particularly useful for handling diverse datasets and improving query performance. Here’s a breakdown of how to use multiple indexes:
-
Multiple indexes can share the same embedding column, so there’s no need to duplicate the embeddings, saving storage and maintaining efficiency. For instance, you might have:
-
A fast HNSW index with parameters
m: 8
andef construction: 16
for quick searches. -
A more accurate but slower HNSW index with parameters
m: 64
andef construction: 512
.
-
-
Assign weights to different indexes during searches to fine-tune result ranking based on the importance of various data aspects. This feature allows for more precise and relevant search outcomes.
WARNING
The sum of all weights must be equal to 1.