How to Use Rerankers in KDB.AI: Cohere, Jina AI, and Voyage AI

This page provides details on how to improve your search results with Cohere, Jina AI, and Voyage AI rerankers in KDB.AI.

Tip

For the best experience, start by reading about reranking in KDB.AI .

KDB.AI allows you to enhance the relevance and personalization of search results through the integration of Cohere, Voyage AI, and Jina AI rerankers. Integrating rerankers in KDB.AI involves a few steps to set up your environment, prepare your data, and configure the reranking process. Here’s a general guide to follow:

Get started

Before you begin, make sure you have the following:

Note

Environment variables you need

KDB.AI

Cohere/JinaAI/VoyageAI

  • KDBAI_ENDPOINT - The endpoint URL for your KDB.AI instance, represented by --endpoint (CLI) or endpoint (Python).

  • KDBAI_API_KEY - The KDB.AI API key, represented by --api-key (CLI) or api_key (Python).

  • COHERE_API_KEY

  • VOYAGEAI_API_KEY

  • JINAAI_API_KEY

Choose a reranker

Use one reranker at a time (or multiple within the same notebook), depending on your use case. Check out the comparison table below to decide which reranker is suitable for you:

Criteria

Cohere

Jina AI

Voyage AI

Best For

Enterprise applications needing high accuracy and efficiency in retrieval

Multimodal data applications requiring robust search and retrieval

Industry-specific data like finance, legal, and code with high-retrieval accuracy

Key Features

- High-performing embedding models- Advanced retrieval models- Flexible deployment options

- Multimodal embeddings- Neural retrievers- Easy integration with cloud-native stack

- Optimized for domain-specific data- Fine-tuned models- Cost-effective vector search

Deployment Options

Cloud or on-premises

Cloud-native, supports gRPC, HTTP, WebSockets

SaaS and customer tenant deployment (in-VPC)

Performance

High accuracy and efficiency

High performance with support for various data types

Superior accuracy with smaller model size and faster inference

Integration

Seamless integration with enterprise data sources

Smooth Pythonic experience, supports Docker and Kubernetes

Easy integration with existing stacks, supports major clouds and data platforms

Use Cases

- Generative AI applications- Search and discovery- Advanced retrieval

- Multimodal AI applications- Embedding services- Tokenization

- Legal AI solutions- Code retrieval- Financial data analysis

Choose the reranking model

Different rerankers provide different models. Each reranker has a default model. model determines the rerank model. With Cohere you can even create your own model.

Cohere

Jina AI

Voyage AI

Python

Copy
reranker = CohereReranker(api_key='COHERE_API_KEY', model='rerank-english-v3.0')

Python

Copy
reranker = JinaAIReranker(api_key='JINAAI_API_KEY', model='jina-reranker-v2-base-multilingual')

Python

Copy
reranker = VoyageAIReranker(api_key='VOYAGEAI_API_KEY', model='rerank-2')

Reranker set up

Install dependencies

Use OpenAI to embed the data and queries, and Langchain to chunk the data.

Python

Copy
!pip install langchain
!pip install openai

Import dependencies

Python

Copy
import os
import numpy as np
import pandas as pd
import langchain
import openai
from langchain_text_splitters import RecursiveCharacterTextSplitter
from openai import OpenAI
import kdbai_client as kdbai 

os.environ["OPENAI_API_KEY"] = "OPENAI_API_KEY"

Set up your KDB.AI database

Python

Copy
session = kdbai.Session(endpoint='http://localhost:8082')

schema = [
    {'name': 'id', 'type': 'int16'},
    {'name': 'content', 'type': 'str'},
    {'name': 'embeddings', 'type': 'float64s'}
]

indexes = [
    {'type': 'flat', 'name': 'flat', 'column': 'embeddings',  'params': {'dims': 1536}},
    {'type': 'hnsw', 'name': 'fast_hnsw', 'column': 'embeddings', 'params': {'dims': 1536,'M': 8, 'efConstruction': 8}},
    {'type': 'hnsw', 'name': 'accurate_hnsw','column': 'embeddings', 'params': {'dims': 1536,'M': 64, 'efConstruction':256}} 
]

database = session.database('rerank')

table = database.create_table('rerank', schema=schema, indexes=indexes)

Prepare your data

data refers to any type of data you want to use. Below is an example of how to prepare data before inserting it to your KDB.AI database.

Python

Copy
client = OpenAI()

def get_data_chunks(data: str) -> list[str]:
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=384,
        chunk_overlap=20,
        length_function=len,
        is_separator_regex=False,
    )
    texts = text_splitter.create_documents([data])
    return texts

def get_embedding(text, model):
    text = text.replace("\n", " ")
    return client.embeddings.create(input=[text], model=model).data[0].embedding

df = pd.DataFrame(columns = ["id", "content", "embeddings"])

data_chunks = get_data_chunks(data)

for num, data_chunk in enumerate(data_chunks):
    text = data_chunk.page_content
    text_embeddings = get_embedding(text, model='text-embedding-3-small')
    df.loc[len(df), :] = (num, text, text_embeddings)

table.insert(df)

Execute search and rerank

Python

Copy
query1 = 'What are the key things president delivered in the speech?'
query2 = 'What did president say about inflation?'

query1_embeddings = get_embedding(query1, model='text-embedding-3-small')
query2_embeddings = get_embedding(query2, model='text-embedding-3-small')

from kdbai_client.rerankers import CohereReranker

reranker = CohereReranker(api_key='COHERE_API_KEY')

table.search_and_rerank(vectors={"flat": [query1_embeddings, query2_embeddings]}, n=3, reranker=reranker, queries=[query1, query2], text_column='content')

Fine tune the reranker

Choose the number of documents to rerank

The overfetch_factor value determines how many documents are processed by the reranker. The overfetch_factor is multiplied by n (nearest neighbors). By default, the overfetch_factor is 2, so if n is 3, the amount of documents processed by the reranker is 6. You only get n results returned. To further fine tune the results, adjust the overfetch_factor.

Cohere

Jina AI

Voyage AI

Python

Copy
reranker = CohereReranker(api_key='COHERE_API_KEY', overfetch_factor=4)

Python

Copy
reranker = JinaAIReranker(api_key='JINAAI_API_KEY', overfetch_factor=4)

Python

Copy
reranker = VoyageAIReranker(api_key='VOYAGEAI_API_KEY', overfetch_factor=4)

Note

If you need help with the integration of Cohere, Jina AI, and Voyage AI rerankers within KDB.AI, feel free to reach out to the KDB.AI Slack community or email support@kdb.ai.

Next steps

Now that you're familiar with reranking, try the following: