Quickstart Guide

This quickstart guide provides first time users with essential instructions for using the PyKX library.

Prerequisites

Before you start, make sure to:

1. Import PyKX

To access PyKX, import it within your Python code using the following syntax:

Python

Copy
>>> import pykx as kx

Information

The use of the shortened name kx is optional and provides a terse convention for interacting with methods and objects from the PyKX library.

2. Generate PyKX objects

You can generate PyKX objects in three ways. Click on a drop-down below and follow the instructions:

Use PyKX functions

From Python data types

Execute q code

Generate PyKX objects using pykx helper functions.

Python

Copy
>>> kx.random.random([3, 4], 10.0)
pykx.List(pykx.q('
4.976492 4.087545 4.49731   0.1392076
7.148779 1.946509 0.9059026 6.203014
9.326316 2.747066 0.5752516 2.560658
'))
>>> kx.Table(data = {'x': kx.random.random(10, 10.0), 'x1': kx.random.random(10, ['a', 'b', 'c'])})
pykx.Table(pykx.q('
x         x1
------------
0.8123546 a
9.367503  a
2.782122  c
2.392341  a
1.508133  b
'))   
                    

Generate PyKX objects from Python, NumPy, Pandas and PyArrow objects by using the kx.toq method.

Python

Copy
>>> qlist = kx.toq(pylist)
    >>> qlist
    pykx.LongVector(pykx.q('10 20 30'))

    >>> import numpy as np
    >>> nplist = np.arange(0, 10, 2)
    >>> qlist = kx.toq(nplist)
    >>> qlist
    pykx.LongVector(pykx.q('0 2 4 6 8'))

    >>> import pandas as pd
    >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
    >>> df
    col1  col2
    0     1     3
    1     2     4
    >>> qtable = kx.toq(df)
    pykx.Table(pykx.q('
    col1 col2
    ---------
    1    3
    2    4
    '))

    >>> import pyarrow as pa
    >>> patab = pa.Table.from_pandas(df)
    >>> patab
    pyarrow.Table
    col1: int64
    col2: int64
    >>> qtable = kx.toq(patab)
    >>> qtable
    pykx.Table(pykx.q('
    col1 col2
    ---------
    1    3
    2    4
    '))

Generate PyKX objects using q by calling #!python kx.q:

Python

Copy
 >>> kx.q('10 20 30')
        pykx.LongVector(pykx.q('10 20 30'))

        >>> kx.q('([]5?1f;5?`4;5?0Ng)')
        pykx.Table(pykx.q('
        x         x1   x2
        ---------------------------------------------------
        0.439081  ncej 8c6b8b64-6815-6084-0a3e-178401251b68
        0.5759051 jogn 5ae7962d-49f2-404d-5aec-f7c8abbae288
        0.5919004 ciha 5a580fb6-656b-5e69-d445-417ebfe71994
        0.8481567 hkpb ddb87915-b672-2c32-a6cf-296061671e9d
        0.389056  aeaj 580d8c87-e557-0db1-3a19-cb3a44d623b1
        '))

3. Interact with PyKX objects

You can interact with PyKX objects in a variety of ways, for example, through indexing using Pythonic syntax, passing PyKX objects to q/NumPy functions, querying via SQL/qSQL syntax or by using the q functionality via the context interface.

For now, we recommend a few examples:

  • Create a PyKX list and interact with it using indexing and slices:

    Python

    Copy
    >>> qarray = kx.random.random(10, 1.0)
    >>> qarray
    pykx.FloatVector(pykx.q('0.391543 0.08123546 0.9367503 0.2782122 0.2392341 0.1508133 0.1567317 0.9785 ..'))
    >>> qarray[1]
    pykx.FloatAtom(pykx.q('0.08123546'))
    >>> qarray[1:4]
    pykx.FloatVector(pykx.q('0.08123546 0.9367503 0.2782122'))
  • Assign objects to PyKX lists:

    Python

    Copy
    >>> qarray = kx.random.random(3, 10.0, seed=10)
    pykx.FloatVector(pykx.q('0.891041 8.345194 3.621949'))
    >>> qarray[1] = 0.1
    >>> qarray
    pykx.FloatVector(pykx.q('0.891041 0.1 3.621949'))
  • Create a PyKX table and manipulate using Pythonic syntax:

    Python

    Copy
    >>> N = 100
    >>> qtable = kx.Table(
        data={
            'x': kx.random.random(N, 1.0),
            'x1': 5 * kx.random.random(N, 1.0),
            'x2': kx.random.random(N, ['a', 'b', 'c'])
        }
    )
    >>> qtable
    pykx.Table(pykx.q('
    x         x1         x2
    -----------------------
    0.3550381 1.185644   c
    0.3615143 2.835405   a
    0.9089531 2.134588   b
    0.2062569 3.852387   a
    0.481821  0.07970141 a
    0.2065625 1.786519   a
    0.5229178 0.1273692  c
    0.3338806 3.440445   c
    0.414621  3.188777   c
    0.9725813 0.1922818  b
    0.5422726 4.486179   b
    0.6116582 3.967756   a
    0.3414991 1.018642   b
    0.9516746 3.878809   c
    0.1169475 0.3469163  c
    0.8158957 2.050957   a
    0.6091539 1.168774   a
    0.9830794 3.562923   b
    0.7543122 0.6961287  a
    0.3813679 1.350938   b
    ..
    '))
    >>> qtable[['x', 'x1']]
    pykx.List(pykx.q('
    0.3550381 0.3615143 0.9089531 0.2062569 0.481821   0.2065625 0.5229178 0.3338..
    1.185644  2.835405  2.134588  3.852387  0.07970141 1.786519  0.1273692 3.4404..
    '))
    >>> qtable[0:5]
    pykx.Table(pykx.q('
    x         x1         x2
    -----------------------
    0.3550381 1.185644   c
    0.3615143 2.835405   a
    0.9089531 2.134588   b
    0.2062569 3.852387   a
    0.481821  0.07970141 a
    '))
  • Pass a PyKX object to a q function:

    Python

    Copy
    >>> qfunction = kx.q('{x+til 10}')
    >>> qfunction(kx.toq([random() for _ in range(10)], kx.FloatVector))
    pykx.FloatVector(pykx.q('0.3992327 1.726329 2.488636 3.653597 4.028107 5.444905 6.542917 7.00628 8.152..'))
  • Apply a Python function on a PyKX Vector:

    Python

    Copy
    >>> qvec = kx.random.random(10, 10, seed=42)
    >>> qvec
    pykx.LongVector(pykx.q('4 7 2 2 9 4 2 0 8 0'))
    >>> qvec.apply(lambda x:x+1)
    pykx.LongVector(pykx.q('5 8 3 3 10 5 3 1 9 1'))
  • Pass PyKX arrays of objects to Numpy functions:

    Python

    Copy
    >>> qarray1 = kx.random.random(10, 1.0)
    >>> qarray1
    pykx.FloatVector(pykx.q('0.7880561 0.9677446 0.9325539 0.6501981 0.4837422 0.5338642 0.5156039 0.31358..'))
    >>> qarray2 = kx.random.random(10, 1.0)
    >>> qarray2
    pykx.FloatVector(pykx.q('0.04164985 0.6417901 0.1608836 0.691249 0.4832847 0.6339534 0.4614883 0.06373..'))

    >>> np.max(qarray1)
    0.9677445779088885
    >>> np.sum(kx.random.random(10, 10))
    43
    >>> np.add(qarray1, qarray2)
    pykx.FloatVector(pykx.q('0.8297059 1.609535 1.093438 1.341447 0.9670269 1.167818 0.9770923 0.3773123 1..'))
  • Query using SQL/qSQL:

    SQL

    Copy
    >>> N = 100
    >>> qtable = kx.Table(
        data={
            'x': kx.random.random(N, ['a', 'b', 'c'],
            'x1': kx.random.random(N, 1.0),
            'x2': 5 * kx.random.random(N, 1.0),
        }
    )
    >>> qtable[0:5]
    pykx.Table(pykx.q('
    x x1        x2
    ----------------------
    a 0.8236115 0.7306473
    a 0.3865843 1.01605
    c 0.9931491 1.155324
    c 0.9362009 1.569154
    c 0.4849499 0.09870703
    '))
    >>> kx.q.sql("SELECT * FROM $1 WHERE x='a'", qtable)
    pykx.Table(pykx.q('
    x x1        x2
    ---------------------
    a 0.8236115 0.7306473
    a 0.3865843 1.01605
    a 0.259265  2.805719
    a 0.6140826 1.730398
    a 0.6212161 3.97236
    ..
    '))
    >>> kx.q.qsql.select(qtable, where = 'x=`a')
    pykx.Table(pykx.q('
    x x1        x2
    ---------------------
    a 0.8236115 0.7306473
    a 0.3865843 1.01605
    a 0.259265  2.805719
    a 0.6140826 1.730398
    a 0.6212161 3.97236
    ..
    '))
  • Apply q keyword functions:

    Python

    Copy
    >>> qvec = kx.q.til(10)
    >>> qvec
    pykx.LongVector(pykx.q('0 1 2 3 4 5 6 7 8 9'))
    >>> kx.q.mavg(3, qvec)
    pykx.FloatVector(pykx.q('0 0.5 1 2 3 4 5 6 7 8'))
  • Get help on a q keyword functions (see installation docs):

    Python

    Copy
    >>> help(kx.q.max)
    Help on UnaryPrimitive in pykx:

    pykx.UnaryPrimitive = pykx.UnaryPrimitive(pykx.q('max'))
        • max

        Maximum.

            >>> pykx.q.max([0, 7, 2, 4 , 1, 3])
            pykx.LongAtom(q('7'))


    >>> help(kx.q.abs)
    Help on UnaryPrimitive in pykx:

    pykx.UnaryPrimitive = pykx.UnaryPrimitive(pykx.q('abs'))
        • abs

        Where x is a numeric or temporal, returns the absolute value of x. Null is returned if x is null.

            >>> pykx.q.abs(-5)
            pykx.LongAtom(q('5'))

4. Convert PyKX objects to Python types

To convert the objects generated via the PyKX library to the corresponding Python, Numpy, Pandas, and PyArrow types, use py, np, pd, and pa methods. Click on a drop-down below to go through the examples:

Convert to Python

Convert to Numpy

Convert to Pandas

Convert to PyArrow

Python

Copy
    >>> qdictionary = kx.toq({'a': 5, 'b': range(10), 'c': np.random.uniform(low=0.0, high=1.0, size=(5,))})
    >>> qdictionary
    pykx.Dictionary(pykx.q('
    a| 5
    b| 0 1 2 3 4 5 6 7 8 9
    c| 0.01450907 0.9131434 0.5745007 0.961908 0.7609489
    '))
    >>> qdictionary.py()
    {'a': 5, 'b': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 'c': [0.014509072760120034, 0.9131434387527406, 0.5745006683282554, 0.9619080068077892, 0.7609488749876618]}
    >>>
    >>> qvec = kx.toq(np.random.randint(5, size=10))
    >>> qvec.py()
    [0, 2, 4, 1, 2, 1, 0, 1, 0, 1]

Python

Copy
>>> import numpy as np
        >>> random = np.random.random
        >>> randint = np.random.randint
        >>> qvec = kx.q('10?5')
        >>> qvec.np()
        array([0, 2, 4, 1, 2, 1, 0, 1, 0, 1])
        >>> qtab = kx.Table([[random(), randint(0, 5)] for _ in range(5)])
        >>> qtab
        pykx.Table(pykx.q('
        x         x1
        ------------
        0.8247812 4
        0.2149847 0
        0.1007832 2
        0.4520411 4
        0.0196153 0
        '))
        >>> qtab.np()
        rec.array([(0.82478116, 4), (0.21498466, 0), (0.10078323, 2),
                (0.45204113, 4), (0.0196153 , 0)],
                dtype=[('x', '<f8'), ('x1', '<i8')])
                    

Python

Copy
>>> qvec = kx.toq(np.random.randint(5, size=10))
>>> qvec.pd()
0    0
1    2
2    4
3    1
4    2
5    1
6    0
7    1
8    0
9    1
dtype: int64
>>> df = pd.DataFrame(data={'x': [random() for _ in range(5)], 'x1': [randint(0, 4) for _ in range(5)]})
>>> qtab = kx.toq(df)
>>> qtab.pd()
x  x1
0  0.824781   4
1  0.214985   0
2  0.100783   2
3  0.452041   4
4  0.019615   0

If using pandas>=2.0 it is possible to also use the as_arrow keyword argument to convert to pandas types using pyarrow as the backend instead of the default numpy backed pandas objects.

Python

Copy
>>> qvec = kx.toq(np.random.randint(5, size=10))
>>> qvec.pd(as_arrow=True)
0    1
1    2
2    3
3    4
4    2
5    3
6    0
7    0
8    2
9    0
dtype: int64[pyarrow]
>>> df = pd.DataFrame(data={'x': [random() for _ in range(5)], 'x1': [randint(0, 4) for _ in range(5)]})
>>> qtab = kx.toq(df)
>>> qtab.pd(as_arrow=True)
x  x1
0  0.541059   3
1  0.886690   1
2  0.674300   4
3  0.532791   3
4  0.523147   4
>>> qtab.pd(as_arrow=True).dtypes
x     double[pyarrow]
x1     int64[pyarrow]
dtype: object

Python

Copy
>>> qvec = kx.random.random(10, 5)
        >>> qvec.pa()
        <pyarrow.lib.Int64Array object at 0x7ffa678f4e80>
        [
            0,
            2,
            4,
            1,
            2,
            1,
            0,
            1,
            0,
            1
        ]
        >>> df = pd.DataFrame(data={'x': [random() for _ in range(5)], 'x1': [randint(0, 4) for _ in range(5)]})
        >>> qtab = kx.toq(df)
        >>> qtab.pa()
        pyarrow.Table
        x: double
        x1: int64
        ----
        x: [[0.707331785506831,0.03695847895120696,0.7024166621644556,0.3955776423810857,0.7539328513313873]]
        x1: [[4,3,2,3,2]]
                    

Next steps