PyKX Introduction Notebook
The purpose of this notebook is to introduce you to PyKX capabilities and functionality.
For the best experience, visit what is PyKX and the quickstart guide first.
To follow along, we recommend to download the notebook.
Now let's go through the following sections:
1. Import PyKX
To access PyKX and its functions, import it in your Python code as follows:
Python
import pykx as kx
kx.q.system.console_size = [10, 80]
Tip
We recommend to always use import pykx as kx
. The shortened
import name kx
makes the code more readable and is standard for the
PyKX library.
Below we load additional libraries used through this notebook:
Python
import numpy as np
import pandas as pd
2. Basic PyKX data structures
Central to your interaction with PyKX are the data types supported by
the library. PyKX is built atop the q
programming language. This
provides small footprint data structures for analytic calculations and
the creation of highly-performant databases. The types we show below are
generated from Python-equivalent types.
This section describes the basic elements in the PyKX library and explains why/how they are different:
2.a Atom
In PyKX, an atom
is a single irreducible value of a specific type. For
example, you may come across pykx.FloatAtom
or pykx.DateAtom
objects
which may have been generated as follows, from an equivalent Pythonic
representation.
Python
from datetime import date
kx.DateAtom(date(2020, 1, 1))
Python
pykx.DateAtom(pykx.q('2020.01.01'))
2.b Vector
Like PyKX atoms, PyKX Vectors
are a data structure with multiple
elements of a single type. These objects in PyKX, along with lists
described below, form the basis for most of the other important data
structures that you will encounter including dictionaries and tables.
Vector objects provide significant benefits when applying analytics over Python lists. Like Numpy, PyKX gains from the underlying speed of its analytic engine when operating on these strictly typed objects.
Vector type objects are always 1-D and are/can be indexed along a single axis.
In the following example, we create PyKX vectors from common Python
equivalent numpy
and pandas
objects:
Python
kx.IntVector(np.array([1, 2, 3, 4], dtype=np.int32))
Python
pykx.IntVector(pykx.q('1 2 3 4i'))
2.c List
A PyKX List
is an untyped vector object. Unlike vectors which are
optimised for the performance of analytics, lists are mostly used for
storing reference information or matrix data.
Unlike vector objects which are 1-D in shape, lists can be ragged N-Dimensional objects. This makes them useful for storing complex data structures, but limits their performance when dealing with data-access/data modification tasks.
Python
kx.List([[1, 2, 3], [1.0, 1.1, 1.2], ['a', 'b', 'c']])
Python
pykx.List(pykx.q('
1 2 3
1 1.1 1.2
a b c
'))
2.d Dictionary
A PyKX Dictionary
is a mapping between a direct key-value association.
The list of keys and values to which they are associated must have the
same count. While it can be considered as a key-value pair, it's
physically stored as a pair of lists.
2.e Table
PyKX Tables
are a first-class typed entity which lives in memory.
They're a collection of named columns implemented as a dictionary. This
mapping construct means that PyKX tables are column oriented. This makes
analytic operations on columns much faster than for a relational
database equivalent.
PyKX Tables come in many forms, but the key table types are as follows:
In this section we exemplify the first two, which are the in-memory data table types.
pykx.Table
Python
print(kx.Table([[1, 2, 'a'], [2, 3, 'b'], [3, 4, 'c']], columns = ['col1', 'col2', 'col3']))
Python
col1 col2 col3
--------------
1 2 a
2 3 b
3 4 c
Python
print(kx.Table(data = {'col1': [1, 2, 3], 'col2': [2 , 3, 4], 'col3': ['a', 'b', 'c']}))
Python
col1 col2 col3
--------------
1 2 a
2 3 b
3 4 c
Python
kx.Table([[1, 2, 'a'], [2, 3, 'b'], [3, 4, 'c']],
columns = ['col1', 'col2', 'col3'])
Python
col1 col2 col3
------------------
0 1 2 a
1 2 3 b
2 3 4 c
Python
kx.Table(data = {
'col1': [1, 2, 3],
'col2': [2 , 3, 4],
'col3': ['a', 'b', 'c']})
Python
col1 col2 col3
------------------
0 1 2 a
1 2 3 b
2 3 4 c
pykx.KeyedTable
Python
kx.Table(data = {'x': [1, 2, 3], 'x1': [2, 3, 4], 'x2': ['a', 'b', 'c']}
).set_index(['x'])
Python
x1 x2
x
-----------
1 2 a
2 3 b
3 4 c
2.f Other data types
Below we outlined some of the important PyKX data type structures that you will run into through the rest of this notebook.
pykx.Lambda
A pykx.Lambda
is the most basic kind of function within PyKX. They
take between 0 and 8 parameters and are the building blocks for most
analytics written by users when interacting with data from PyKX.
pykx.Projection
Like functools.partial, functions in PyKX can have some of their parameters set in advance, resulting in a new function, which is called a projection. When you call this projection, the set parameters are no longer required and cannot be provided.
If the original function had n
total parameters and m
provided, the
result would be a function (projection) that requires the user to input
n-m
parameters.
3. Access and create PyKX objects
Now that you're familiar with the PyKX object types, let's see how they work in real-world scenarios, such as:
- Create PyKX objects from Pythonic data types
- Random data generation
- Run q code to generate data
- Read data from a CSV file
- Query external processes via IPC
3.a Create PyKX objects from Pythonic data types
One of the most common ways to generate PyKX data is by converting equivalent Pythonic data types. PyKX natively supports conversions to and from the following common Python data formats:
- Python
- Numpy
- Pandas
- PyArrow
You can generate PyKX objects by using the kx.toq
PyKX function:
Python
pydict = {'a': [1, 2, 3], 'b': ['a', 'b', 'c'], 'c': 2}
kx.toq(pydict)
Python
---------
a 123
b abc
c 2
Python
nparray = np.array([1, 2, 3, 4], dtype = np.int32)
kx.toq(nparray)
Python
pykx.IntVector(pykx.q('1 2 3 4i'))
Python
pdframe = pd.DataFrame(data = {'a':[1, 2, 3], 'b': ['a', 'b', 'c']})
kx.toq(pdframe)
Python
a b
----------
0 1 a
1 2 b
2 3 c
3.b Random data generation
PyKX provides a module to create random data of user-specified PyKX types or their equivalent Python types. The creation of random data helps in prototyping analytics.
As a first example, generate a list of 1,000,000 random floating-point values between 0 and 1 as follows:
Python
kx.random.random(1000000, 1.0)
Python
pykx.FloatVector(pykx.q('0.3927524 0.5170911 0.5159796 0.4066642 0.1780839 0.3017723 0.785033 0.534709..'))
If you wish to choose values randomly from a list, use the list as the second argument to your function:
Python
kx.random.random(5, [kx.LongAtom(1), ['a', 'b', 'c'], np.array([1.1, 1.2, 1.3])])
Python
pykx.List(pykx.q('
1.1 1.2 1.3
1
1.1 1.2 1.3
1
`a`b`c
'))
Random data does not only come in 1-Dimensional forms. To create multi-Dimensional PyKX Lists, turn the first argument into a list. The following examples include a PyKX trick that uses nulls/infinities to generate random data across the full allowable range:
Python
kx.random.random([2, 5], kx.GUIDAtom.null)
Python
pykx.List(pykx.q('
9b19ab9c-b26d-d6b3-a8fa-267ba0620848 d8d6c050-964e-6247-e2cd-bf9435389b9a 1c4..
a68f5b00-754e-9863-04aa-8b59cc4e3122 72969cc8-4445-451b-9266-7770a60c3120 0c7..
'))
Python
kx.random.random([2, 3, 4], kx.IntAtom.inf)
Python
pykx.List(pykx.q('
1837510540 373968399 35818431 1421474592 424239201 1727064393 250148680 1..
1566069007 1773121422 2104411811 1441846567 103906494 315107819 931560883 ..
'))
Finally, to have consistency over the generated objects, set the seed for the random data generation explicitly. You can complete this globally or for individual function calls:
Python
kx.random.seed(10)
kx.random.random(10, 2.0)
Python
pykx.FloatVector(pykx.q('0.1782082 1.669039 0.7243899 1.999868 0.7675971 1.723838 0.1836728 0.5061767 ..'))
Python
kx.random.random(10, 2.0, seed = 10)
Python
pykx.FloatVector(pykx.q('0.1782082 1.669039 0.7243899 1.999868 0.7675971 1.723838 0.1836728 0.5061767 ..'))
3.c Run q code to generate data
PyKX is an entry point to the vector programming language q. This means
that PyKX users can execute q code directly via PyKX within a Python
session, by calling kx.q
.
For example, to create q data, run the following command:
Python
kx.q('([idx:desc til 5]col1:til 5;col2:5?1f;col3:5?`2)')
Python
col1 col2 col3
idx
4 0 0.8619188 ol
3 1 0.09183638 mg
2 2 0.2530883 cm
1 3 0.2504566 cc
0 4 0.7517286 jg
Next, apply arguments to a user-specified function x+y
:
3.d Read data from a CSV file
A lot of data that you run into for data analysis tasks comes in the
form of CSV files. PyKX, like Pandas, provides a CSV reader called via
kx.q.read.csv
. In the next cell we create a CSV that can be read in
PyKX:
Python
import csv
with open('pykx.csv', 'w', newline='') as file:
writer = csv.writer(file)
field = ["name", "age", "height", "country"]
writer.writerow(field)
writer.writerow(["Oladele Damilola", "40", "180.0", "Nigeria"])
writer.writerow(["Alina Hricko", "23", "179.2", "Ukraine"])
writer.writerow(["Isabel Walter", "50", "179.5", "United Kingdom"])
Python
kx.q.read.csv('pykx.csv', types = {'age': kx.LongAtom, 'country': kx.SymbolAtom})
Python
name age height country
---------------------------------------------------------
0 "Oladele Damilola" 40 180e Nigeria
1 "Alina Hricko" 23 179.2e Ukraine
2 "Isabel Walter" 50 179.5e United Kingdom
Python
import os
os.remove('pykx.csv')
3.e Query external processes via IPC
One of the most common usage patterns in organizations with access to data in kdb+/q is to query data from an external server process infrastructure. For the example below you need to install q.
First, set up a q/kdb+ server. Set it on port 5050 and populate it with
some data in the form of a table tab
:
Python
import subprocess
import time
try:
with kx.PyKXReimport():
proc = subprocess.Popen(
('q', '-p', '5000')
)
time.sleep(2)
except:
raise kx.QError('Unable to create q process on port 5000')
Once a q process is available, connect to it for synchronous query execution:
Python
conn = kx.SyncQConnection(port = 5000)
You can now run q commands against the q server:
Python
conn('tab:([]col1:100?`a`b`c;col2:100?1f;col3:100?0Ng)')
conn('select from tab where col1=`a')
Python
col1 col2 col3
-----------------------------------------------------------
0 a 0.01974141 ddb87915-b672-2c32-a6cf-296061671e9d
1 a 0.5611439 580d8c87-e557-0db1-3a19-cb3a44d623b1
2 a 0.8685452 2d948578-e9d6-79a2-8207-9df7a71f0b3b
3 a 0.3460797 cddeceef-9ee9-3847-9172-3e3d7ab39b26
4 a 0.5046331 1c22a468-9492-2173-9e4f-9003a23d02b7
5 a 0.765905 5e9cd21b-88c5-bbf5-7215-6409e115a2a4
6 a 0.8794685 3462beab-42ee-ccad-989b-8d69f070dffc
7 a 0.02487862 bc150163-c551-0eba-8871-9767f5c0e3d5
8 a 0.3664924 dd6b4a2b-c046-e464-a0b9-efb96ed5f0eb
... ... ... ...
36 a 0.9929108 03a9b290-95c8-c3b8-fb9a-9ac9874763b8
37 rows × 3 columns
Alternatively, use the PyKX query API:
Python
conn.qsql.select('tab', where=['col1=`a', 'col2<0.3'])
Python
col1 col2 col3
----------------------------------------------------------
0 a 0.01974141 ddb87915-b672-2c32-a6cf-296061671e9d
1 a 0.02487862 bc150163-c551-0eba-8871-9767f5c0e3d5
2 a 0.2073435 ee853957-d502-d30d-5945-bf8c97022332
3 a 0.2188574 d9a3e171-b1cf-0271-507a-0fba0b52e6ff
4 a 0.1451855 ea4d0269-375c-d73b-96f0-6bb6334ca423
5 a 0.1497004 1cce6bdd-e34b-ba4f-8c01-31d098d81221
6 a 0.166486 6417d4b3-3fc6-e35a-1c34-8c5c3327b1e8
7 a 0.2643322 f294c3cb-a6da-e15d-c8e0-3a848d2abf10
8 a 0.07841939 020715aa-8ffa-e1d3-9c68-3ad7919d4f5e
9 a 0.08077328 65b2f5b0-918c-b87b-4fc4-4aa24b192476
Or use PyKX's context interface to run SQL server side if you have access to it:
Python
conn('\l s.k_')
conn.sql('SELECT * FROM tab where col2>=0.5')
Python
col1 col2 col3
----------------------------------------------------------
0 a 0.5611439 580d8c87-e557-0db1-3a19-cb3a44d623b1
1 a 0.8685452 2d948578-e9d6-79a2-8207-9df7a71f0b3b
2 b 0.7716917 52cb20d9-f12c-9963-2829-3c64d8d8cb14
3 a 0.5046331 1c22a468-9492-2173-9e4f-9003a23d02b7
4 c 0.6014692 7ea4d431-4dec-3017-3d13-cc9ef7f1c0ee
5 c 0.5000071 782c5346-f5f7-b90e-c686-8d41fa85233b
6 c 0.8392881 245f5516-0cb8-391a-e1e5-fadddc8e54ba
7 b 0.5938637 e30bab29-2df0-3fb0-535f-58d1e7bd83c0
8 a 0.765905 5e9cd21b-88c5-bbf5-7215-6409e115a2a4
... ... ... ...
55 b 0.8236115 f2c41bca-67df-aa6c-4730-bca38cbd6825
56 rows × 3 columns
Finally, shut down the q server used for this demonstration:
Python
proc.kill()
4. Run analytics on PyKX objects
Like many Python libraries (including Numpy and Pandas), PyKX provides many ways to use its data with analytics that you generated and defined within the library. Let's explore the following:
- Use in-built methods on PyKX Vectors
- Use in-built methods on PyKX Tables
- Use PyKX/q native functions
4.a Use in-built methods on PyKX Vectors
When you interact with PyKX Vectors, you may wish to gain insights into
these objects through the application of basic analytics such as
calculation of the mean
/median
/mode
of the vector:
Python
q_vector = kx.random.random(1000, 10.0)
The above is useful for basic analysis. For bespoke analytics on these
vectors, use the apply
method:
Python
def bespoke_function(x, y):
return x*y
q_vector.apply(bespoke_function, 5)
Python
pykx.FloatVector(pykx.q('31.74132 38.3376 46.40922 10.17963 38.73944 48.33864 41.12562 45.44382 32.290..'))
4.b Use in-built methods on PyKX Tables
In addition to the vector processing capabilities of PyKX, it's important to have the ability to manage tables. Highlighted in depth within the Pandas-Like API documentation, these methods allow you to apply functions and gain insights into your data in a familiar way.
The example below uses combinations of the most used elements of this Table API operating on the following table:
Python
N = 1000000
example_table = kx.Table(data = {
'sym' : kx.random.random(N, ['a', 'b', 'c']),
'col1' : kx.random.random(N, 10.0),
'col2' : kx.random.random(N, 20)
}
)
example_table
Python
sym col1 col2
----------------------------
0 b 7.782944 6
1 c 0.5899977 17
2 c 2.580528 8
3 b 5.651351 10
4 b 2.336329 11
5 b 2.87167 17
6 c 9.705893 9
7 a 5.729889 8
8 c 1.482026 14
... ... ... ...
999999 c 8.862285 6
1,000,000 rows × 3 columns
You can search for and filter data within your tables using loc
similarly to how this is achieved by Pandas:
Python
example_table.loc[example_table['sym'] == 'a']
Python
sym col1 col2
----------------------------
0 a 5.729889 8
1 a 4.396508 13
2 a 0.7636906 19
3 a 9.904306 17
4 a 1.439738 10
5 a 2.898631 19
6 a 2.360396 2
7 a 1.932728 12
8 a 4.877998 4
... ... ... ...
332823 a 6.653308 18
332,824 rows × 3 columns
This also happens when retrieving data from a table through the
__get__
method:
Python
example_table[example_table['sym'] == 'b']
Python
sym col1 col2
--------------------------
0 b 7.782944 6
1 b 5.651351 10
2 b 2.336329 11
3 b 2.87167 17
4 b 2.917054 2
5 b 7.093562 18
6 b 1.715391 10
7 b 4.231884 0
8 b 4.727296 2
... ... ... ...
333014 b 9.361253 17
333,015 rows × 3 columns
Next, you can set the index columns of a table. In PyKX, this means
converting the table from a pykx.Table
object to a pykx.KeyedTable
object:
Python
example_table.set_index('sym')
Python
col1 col2
sym
--------------------
b 7.782944 6
c 0.5899977 17
c 2.580528 8
b 5.651351 10
b 2.336329 11
b 2.87167 17
c 9.705893 9
a 5.729889 8
c 1.482026 14
... ... ...
c 8.862285 6
1,000,000 rows × 3 columns
Or you can apply basic data manipulation operations such as mean
and
median
:
Python
print('mean:')
display(example_table.mean(numeric_only = True))
print('median:')
display(example_table.median(numeric_only = True))
Python
mean:
----------------
col1 4.998412
col2 9.497452
median:
----------------
col1 4.996685
col2 9f
Next, use the groupby
method to group PyKX tabular data so you can use
it for analytic purposes.
In the first example, let's start by grouping the dataset based on the
sym
column and calculate the mean
for each column based on their
sym
:
Python
example_table.groupby('sym').mean()
Python
col1 col2
sym
-------------------------
a 5.00519 9.49375
b 5.000742 9.501077
c 4.989338 9.497527
To extend the above groupby
, consider a more complex example which
uses numpy
to run calculations on the PyKX data. You will notice later
that you can simplify this specific use-case further.
Python
def apply_func(x):
nparray = x.np()
return np.sqrt(nparray).mean()
example_table.groupby('sym').apply(apply_func)
Python
col1 col2
sym
-------------------------
a 2.109397 2.859095
b 2.108571 2.860037
c 2.105694 2.859527
For time-series specific joining of data, use merge_asof
joins. In
this example, you have several tables with temporal information namely a
trades
and quotes
table:
Python
trades = kx.Table(data={
"time": [
pd.Timestamp("2016-05-25 13:30:00.023"),
pd.Timestamp("2016-05-25 13:30:00.023"),
pd.Timestamp("2016-05-25 13:30:00.030"),
pd.Timestamp("2016-05-25 13:30:00.041"),
pd.Timestamp("2016-05-25 13:30:00.048"),
pd.Timestamp("2016-05-25 13:30:00.049"),
pd.Timestamp("2016-05-25 13:30:00.072"),
pd.Timestamp("2016-05-25 13:30:00.075")
],
"ticker": [
"GOOG",
"MSFT",
"MSFT",
"MSFT",
"GOOG",
"AAPL",
"GOOG",
"MSFT"
],
"bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01],
"ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03]
})
quotes = kx.Table(data={
"time": [
pd.Timestamp("2016-05-25 13:30:00.023"),
pd.Timestamp("2016-05-25 13:30:00.038"),
pd.Timestamp("2016-05-25 13:30:00.048"),
pd.Timestamp("2016-05-25 13:30:00.048"),
pd.Timestamp("2016-05-25 13:30:00.048")
],
"ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"],
"price": [51.95, 51.95, 720.77, 720.92, 98.0],
"quantity": [75, 155, 100, 100, 100]
})
print('trades:')
display(trades)
print('quotes:')
display(quotes)
Python
trades:
time ticker bid ask
-------------------------------------------------------------
0 2016.05.25D13:30:00.023000000 GOOG 720.5 720.93
1 2016.05.25D13:30:00.023000000 MSFT 51.95 51.96
2 2016.05.25D13:30:00.030000000 MSFT 51.97 51.98
3 2016.05.25D13:30:00.041000000 MSFT 51.99 52f
4 2016.05.25D13:30:00.048000000 GOOG 720.5 720.93
5 2016.05.25D13:30:00.049000000 AAPL 97.99 98.01
6 2016.05.25D13:30:00.072000000 GOOG 720.5 720.88
7 2016.05.25D13:30:00.075000000 MSFT 52.01 52.03
quotes:
time ticker price quantity
-------------------------------------------------------------
0 2016.05.25D13:30:00.023000000 MSFT 51.95 75
1 2016.05.25D13:30:00.038000000 MSFT 51.95 155
2 2016.05.25D13:30:00.048000000 GOOG 720.77 100
3 2016.05.25D13:30:00.048000000 GOOG 720.92 100
4 2016.05.25D13:30:00.048000000 AAPL 98f 100
When applying the asof
join, you can additionally use named arguments
to make a distinction between the tables that the columns originate
from. In this case, suffix with _trades
and _quotes
:
Python
trades.merge_asof(quotes, on='time', suffixes=('_trades', '_quotes'))
Python
time ticker_trades bid ask ticker_quotes price quantity
-------------------------------------------------------------------------------------------------
0 2016.05.25D13:30:00.023000000 GOOG 720.5 720.93 MSFT 51.95 75
1 2016.05.25D13:30:00.023000000 MSFT 51.95 51.96 MSFT 51.95 75
2 2016.05.25D13:30:00.030000000 MSFT 51.97 51.98 MSFT 51.95 75
3 2016.05.25D13:30:00.041000000 MSFT 51.99 52f MSFT 51.95 155
4 2016.05.25D13:30:00.048000000 GOOG 720.5 720.93 AAPL 98f 100
5 2016.05.25D13:30:00.049000000 AAPL 97.99 98.01 AAPL 98f 100
6 2016.05.25D13:30:00.072000000 GOOG 720.5 720.88 AAPL 98f 100
7 2016.05.25D13:30:00.075000000 MSFT 52.01 52.03 AAPL 98f 100
4.c Use PyKX/q native functions
While the Pandas-like API and methods provided off PyKX Vectors provides
an effective method of applying analytics on PyKX data, the most
efficient and performant way to run analytics on your data is by using
PyKX/q primitives available through the kx.q
module.
These include functionality for calculating moving averages, asof/window joins, column reversal etc. Now let's see a few examples with how you can use these functions, grouped into the following sections:
Mathematical functions
mavg
Calculate a series of average values across a list using a rolling window:
Python
kx.q.mavg(10, kx.random.random(10000, 2.0))
Python
pykx.FloatVector(pykx.q('1.469756 1.029263 0.7352848 0.5950915 0.7071875 0.8486546 0.910078 0.95322 1...'))
cor
Calculate the correlation between two lists:
Python
kx.q.cor(kx.random.random(100, 1.0), kx.random.random(100, 1.0))
Python
pykx.FloatAtom(pykx.q('0.02687833'))
prds
Calculate the cumulative product across a supplied list:
Iteration functions
each
Supplied both as a standalone primitive and as a method for PyKX Lambdas
each
allows you to pass individual elements of a PyKX object to a
function:
Python
kx.q.each(kx.q('{prd x}'), kx.random.random([5, 5], 10.0, seed=10))
Python
pykx.FloatVector(pykx.q('1033.597 377.1784 7126.713 418.3232 89.97531'))
Python
kx.q('{prd x}').each(kx.random.random([5, 5], 10.0, seed=10))
Python
pykx.FloatVector(pykx.q('1033.597 377.1784 7126.713 418.3232 89.97531'))
Table functions
meta
Retrieve metadata information about a table:
Python
qtab = kx.Table(data = {
'x' : kx.random.random(1000, ['a', 'b', 'c']).grouped(),
'y' : kx.random.random(1000, 1.0),
'z' : kx.random.random(1000, kx.TimestampAtom.inf)
})
xasc
Sort the contents of a specified column in ascending order:
Python
kx.q.xasc('z', qtab)
Python
x y z
-------------------------------------------------------
0 c 0.2660419 2000.09.17D00:27:33.222932480
1 b 0.2378591 2001.02.01D19:58:48.496586752
2 c 0.05802967 2001.05.29D15:29:16.181340160
3 c 0.9474748 2003.03.24D08:12:02.975653888
4 b 0.02726729 2004.01.31D07:25:21.959215104
5 b 0.08927731 2004.12.31D23:50:54.425055232
6 c 0.2256163 2005.07.12D10:45:38.423119872
7 b 0.1675316 2006.04.19D21:31:40.507750400
8 b 0.8185412 2006.05.28D15:22:24.331161600
... ... ... ...
999 a 0.4414727 2292.03.15D06:41:24.638662656
1,000 rows × 3 columns
You can find the full list of the functions and some examples of their usage here.