KDB-X Public Preview 2025-10-16

SQL in KDB-X Quickstart

This quickstart walks you through creating, inserting into, querying, and dropping a table in KDB-X using SQL.
You will use basic Data Definition Language (DDL) and Data Manipulation Language (DML) commands.

1. Create a table

Use to define a new table in memory. The example below creates an empty table with two
columns: (string) and (float).

s)CREATE TABLE tripsFare (vendor varchar, fare float)
.S.e"SELECT * FROM tripsFare"

You can also create a more complex table with multiple data types and constraints:

Ss)CREATE TABLE cars (
id B
Name varchar()
"Miles_per_Gallon" smallint,
"Cylinders" smallint,
"Displacement” smallint,
"Horsepower" smallint,
"Weight_in_1bs" smallint NOT NULL,
"Acceleration" smallint,
"Year" date NOT NULL,
"Origin" varchar(60)

)

.Ss.e"SELECT * FROM cars

Note:

Use “char(1)" to define a column of g type “char’ . Use “char(n>1)" or “varchar(n)’
for longer strings.
See [reference](reference.md#data-types) for the full list of supported types.

2. Insert data

Use to add rows to an existing table. The following example inserts a single row into

s)INSERT INTO tripsFare(vendor,fare) VALUES ('CMT',)
S)SELECT * FROM tripsFare

1/27 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

You can also insert multiple rows at once:

s)INSERT INTO tripsFare(vendor,fare) VALUES ('DDS',3061),('CMT',589)
S)SELECT * FROM tripsFare

The next example inserts two rows into the table:

S)CREATE TABLE cars (
id , Name varchar(), "Miles per Gallon" smallint,
"Cylinders" smallint, "Displacement" smallint, "Horsepower" smallint,
"Weight_in_1lbs" smallint NOT NULL, "Acceleration" smallint,
"Year" date NOT NULL, "Origin" character varchar(60)

)s
s)INSERT INTO cars VALUES
(1, 'chevrolet chevelle malibu', > 8, 5 g g c 9
"USA');
s)INSERT INTO cars VALUES

(2, 'volkswagen deluxe sedan', > 4, s s s P s
"Europe’);

3. Query data

Use to retrieve rows. You can return all data or filter it with conditions.

S)SELECT * FROM tripsFare

4. Drop a table

Use to delete a table from memory. The example below drops the table if it exists.

s)DROP TABLE IF EXISTS tripsFare

Congratulations! You have now created, populated, queried, and dropped tables in KDB-X using SQL.

SQL in KDB-X Reference

This page describes the full SQL reference for KDB-X. It lists supported data types, operators, functions,
statements, and compliance. All examples show SQL that KDB-X translates into q at runtime.

Data and literals

2127 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

SQL in KDB-X supports a range of data types and literals. You can define tables using these types and write

queries that recognize common literal values such as , , and . This section describes how SQL

types map to q datatypes and shows how to use string and type literals in queries.

Data type conversions

The table below shows how SQL types map to SQL in KDB-X types and q datatypes.

SQL type KXsQL q Name

text a 0 list of character vectors

varchar, char(n>1) S 11 symbol

char(1) C 10 char

guid g 16 guid

boolean b 1 boolean

uuid q 2 guid

tinyint X 4 byte

smallint h 5 short

integer [6 int

bigint J 7 long

real e 8 real

float, double, numeric f 9 float

date d 14 date

datetime z 8 datetime

time t 19 time

datetime n 8 timespan

long m 4 month

long u 4 minute

long v 4 second

timestamp (w/o tz) p 12 timestamp

varchar q 20 enum
I 20 link (enum used for linked table access)
w ‘null’ SQL value

Refer to KX data types for details of how q datatypes are defined.
Info:

3/27 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

https://code.kx.com/q/basics/datatypes/

KDB-X Public Preview 2025-10-16

Always use uppercase characters when you define a list.

Literals

SQL in KDB-X supports the following literals:

false
null
true

String literals

SQL in KDB-X converts string literals automatically to the following types when possible:

date
time
timestamp

Example

1 . 1

s)select * from t date in (' Y) time>

Type literals

You can use type literals directly. For example:

date'2001-01-01'

Operators

Operators let you compare values and build expressions in SQL statements.

Arithmetic operators

Use arithmetic operators to perform basic calculations.

Operator Description

+ Add

- Subtract

427 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

Operator Description

* Multiply

/ Divide

= Equals to

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to
<> Not equal to

Examples

¢ Add two columns and create a new column::

.S.e"SELECT fare,tip,fare+tip as new_total FROM trips"

Subtract one column from another:

.S.e"SELECT month,month-1 as prev_month FROM trips"

Multiply one column from another and create a new column:

// multiply *
.S.e"SELECT distance,5280*distance as distance_feet FROM trips"

Divide a column by a fixed value and create a new column:

// divide /
.s.e"SELECT fare, fare/100 as fare_cents FROM trips"

Filter rows using equality:

// equal to =
.S.e"SELECT * FROM trips where passengers=2"

Apply inequalities:

5727 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16
// equal to =
.S.e"SELECT * FROM trips where passengers=2"

// greater than >=
.S.e"SELECT fare,tip,fare+tip as total FROM trips WHERE tip>0"

// less than <=
.S.e"SELECT * FROM trips WHERE fare<5"

// greater than or equal to >=
.S.e"SELECT * FROM trips WHERE distance>=12"

// less than or equal to <=
.S.e"SELECT * FROM trips WHERE fare<=5"

® Exclude rows with not equal:

// not equal to <>
.S.e"SELECT * FROM trips WHERE passengers<>1"

// not equal to !=
.S.e"SELECT * FROM trips WHERE passengers!=1"

Logical operators

Logical operators combine conditions in a clause.

Operator Description

AND TRUE if all the conditions separated by AND are TRUE
OR TRUE if any of the conditions separated by OR is TRUE
NOT Displays a record if the condition(s) is NOT TRUE

BETWEEN TRUE if the operand is within the range of comparisons

IN TRUE if the operand is equal to one of a list of expressions

LIKE TRUE if the operand matches a pattern

IS NULL TRUE if the value is NULL

Examples

* AND only returns records that meet ALL criteria:

// AND
.S.e"SELECT * FROM trips WHERE passengers=3 AND vendor='DDS"'"

6 /27 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

* OR returns records that meet ONE or MORE of the criteria:

// OR
.S.e"SELECT * FROM trips WHERE tip>2@ OR fare>100"

* IN specifies multiple values in a clause, which is a shorthand for multiple OR clauses:

.S.e"SELECT * FROM trips WHERE payment_type IN ('CASH', 'CREDIT');"

® NOT returns records that DO NOT meet the criteria:

// NOT
.S.e"SELECT * FROM trips WHERE NOT passengers=1"

Info: This option is equivalent to <> and

Between

Use to select values within a given range. The values can be numbers, text, dates or datetimes.
Examples

e Return records where values fall between two numbers:

.S.e"SELECT * FROM trips WHERE fare BETWEEN 10 AND 12;"

® Return records that fall alphabetically between two text values:

.S.e"SELECT * FROM trips WHERE payment_type BETWEEN ‘'CASH' AND 'DISPUTE';"

e Return records that fall between two datetimes:

.S.e"SELECT * FROM trips WHERE pickup_time BETWEEN '2009-01-01 ©0:30:00' AND
'2009-01-01 00:35:00" ;"

® Return records for a single day:

.S.e"SELECT * FROM trips WHERE date BETWEEN '2009-01-01' AND '2009-01-02';"

7127 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16
Like

Use ina clause to search for a specified pattern in a column. As in standard SQL syntax the

following two wildcards are supported:

* The percent sign % represents zero, one, or multiple characters.
* The underscore sign represents one, single character.

Examples

® Use % to return all records where a field begins with a letter:

.S.e"SELECT * FROM trips WHERE payment_type LIKE 'C%';"

® Use to search just leaving out one single character:

.5.e"SELECT * FROM trips WHERE payment_type LIKE 'C_EDIT';"

Conditional expressions

Conditional expressions let you return values based on conditions.

case [a] when b then x ... else y
coalesce
nullif

Note:

Both the general and 'simple' comparison forms of “~case” are supported.

Functions

SQL in KDB-X provides built-in functions you can use to transform, aggregate, and analyze data in queries.
These functions cover string manipulation, datetime operations, mathematical calculations, and type casting.

String functions

SQL in KDB-X supports the following string functions:

| | position(x in y)

left position(x,y)
right substring(x from y)
lower substring(x from y for z)

8/27 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

upper substring(x,y,z)
length concat

trim ltrim

rtrim

Note: "Substring”

There is no pattern matching on " substring .

Datetime functions

SQL in KDB-X supports the following datetime functions:

extract(field from x) current_date

current_time current_timestamp
localtime localtimestamp
date_trunc now
unnest xbar

Examples
e Use

s)select extract(hour from timestamp '2002-09-17 19:27:45")

extract

® Use

s)select date_trunc('hour', timestamp '2017-03-17 02:09:30");

date_trunc

2017.03.17D02:00:00.000000000

® Use

s)select xbar(10,x) from qt('([]1 12 23)")
s)select xbar('0D00:10',x) from qt('([]oD+10:21 11:32 13:43)")

9/27 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

Math functions

SQL in KDB-X supports the following math functions:

div
floor
power
round
stddev
trunc

Examples

t:([] a:)

s)select round(a) from t

Cast

Use to convert from one data type to another.

cast(x as typename) x::typename

Select statements

Combine SQL operations with the statement. The following operations apply:

Operator Description

DISTINCT Return only distinct (different) values

LIMIT Select a limited number of records

AS Give a table, or a column in a table, a temporary name

ORDER BY Sort the result set in ascending or descending order

GROUP BY Groups rows that have the same values into summary rows

JOIN Combine rows from two or more tables

10/27 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

Operator Description

WHERE Filters records

HAVING Used in conjunction with GROUP BY aggregate functions

select [] ns from t (left|right|inner)
join ..join q on f(t)=g(q)
C
by 1,8
having h
order by 1,0 |
limit n
Distinct
Use to return only distinct (different) values.
Examples

® Return a unique list of vendor names in the trips table:

.S.e"SELECT DISTINCT vendor FROM trips;"

Limit
Use to select a limited number of records, partition-by-partition. This is useful on large tables to reduce

the impact on performance.

Warning: Using with an is not yet available.

Examples

® Return only the first 5 records from a table:

// LIMIT
.s.e"SELECT * FROM TRIPS LIMIT 5;"

As

Use 25 to give a table, or a column in a table, a temporary name.

Examples

® Renaming the column:

11/27 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

.S.e"SELECT vendor as company FROM trips"

Order by
Use to sort the result set in ascending or descending order.

This keyword sorts the records in ascending order by default. To sort the records in descending order, use the
DESC keyword.

Examples

® Sort the records in ascending order:

.s.e" SELECT * FROM trips ORDER BY payment_type;"

® Sort the records in descending order:

.s.e" SELECT * FROM trips ORDER BY payment_type DESC;"

Info: "Expression types" expressions may be column names, ordinal numbers of the output
columns, or arbitrary expressions.

Group by

Use to groups rows that have the same values for one or more columns or expressions into

summary rows.
This statement is often used with aggregate functions.
Examples

® Return a count of the number of trips by a column value:

.S.e"SELECT payment type, COUNT(payment type) AS count per_type FROM trips
GROUP BY payment_type"

Info: "Expression types" expressions may be column names, ordinal numbers of the output

columns, or arbitrary expressions.

Aggregates

The following aggregates are supported:

12 /27 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

sum total

avg last

count max

count(*) min

first sum

Examples
* Using , , ,)
t:([] s: AAPL GOOG BARC VOD; p: ; a:)

s)select (p), (a), (s), (s) from t

® Using

q:([] s: AAPLAAPL GOOG GOOG; p:4?)
s)select (s) from q

Note: "Aggregates and distinct" ,) , , are all supported with

Join

Use the clause to combine rows from two or more tables, based on a related column between them.
Join types supported include , , , and

Warning: Joins may be nested, but , and are not yet implemented.

Left join

Returns all records from the left-hand table, and the matched records from the right-hand table.
Examples

* Join two tables based on matching values in a column:

.S.e"SELECT * FROM trips LEFT JOIN cash credit ON trips.payment_type =
cash _credit.payment type;"

13/27 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

Info: "No matching records” If no matches exist, records in the left-hand table are returned but joined fields
are blank.

Right join
Returns all records from the right-hand table, and the matching records from the left-hand table.
Examples

* Join two tables based on matching values in a column, returning all records in the right-hand table:

.S.e"SELECT * FROM trips RIGHT JOIN cash_credit ON trips.payment_type =
cash_credit.payment_type;"

Inner join
Returns records that have matching values in both tables.
Examples

* Join two tables based on matching values in a column, only returning records that are ones in both
tables:

.S.e"SELECT * FROM trips INNER JOIN cash_credit ON trips.payment_type =
cash_credit.payment_type;"

Cross join

Use to return a result set which is the number of rows in the first table multiplied by the number
of rows in the second table, if no WHERE clause is used along with . This result is a Cartesian
Product.

Examples

* Cross join two tables:

cross_tab:.s.e"SELECT * FROM cash_credit CROSS JOIN vendors;"

Each row from the first table joins with each row of the second table such that:

Table Number rows
cash_credit X
vendors y

14 /27 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

Table Number rows

cash_credit CROSS JOIN vendors x*y

Note: "CTE/WITH SELECT"

SQL in KDB-X supports common table expressions (CTEs). Write them in the form:
with tl1 as (select...), t2 as (select... t1) select... t2

The system materializes the results unless it can express them as a union of
operations on individual partitions.

Subquery

SQL in KDB-X supports scalar subqueries and correlated subqueries. The following operators accept subquery
arguments:

[not] in
[not] exists

v A

Combined queries

SQL in KDB-X supports the following operators for combining queries:

union[all]
intersect[all]
except[all]

SQL compliance

View ANSI SQL compliance details.

The following table summarizes ANSI SQL features and whether KDB-X supports them:

| **Function** | **Description** | **Status** | **Notes** |

15/27 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

E@11-01 | INTEGER and SMALLINT data types (including all spellings)

Yes | |
E011-02 | REAL, DOUBLE PRECISION, and FLOAT data types
Yes | |
E@11-03 | DECIMAL and NUMERIC data types
No | |
EQ11-04 | Arithmetic operators
Yes | |
EQ11-05 | Numeric comparison
Yes | |
EQ11-06 | Implicit casting among the numeric data types
Yes | |
|
I I
E021 | Character string types

E@21-01 | CHARACTER data type (including all its spellings)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Yes | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

E@21-02 | CHARACTER VARYING data type (including all its spellings)

Yes | |

E@21-03 | Character literals

Yes | |

E021-04 | CHARACTER_LENGTH function

Yes | |

E@21-05 | OCTET_LENGTH function

Pending | |

E@21-06 | SUBSTRING function

Yes | |

E@21-07 | Character concatenation

Yes | |

E@21-08 | UPPER and LOWER functions

Yes | |

E@21-09 | TRIM function

Pending | |

E@21-10 | Implicit casting among the fixed-length and variable-length character
string types | Yes |

E021-11 | POSITION function

Yes | |
E@21-12 | Character comparison
Yes | |
I
| |

|

|

|

|

|

|

|

| E@31 | Identifiers
|

| E@31-01 | Delimited identifiers
|

|

|

|

|

Yes | |
E@31-02 | Lower case identifiers

Yes | |
E@31-03 | Trailing underscore

Yes | |

16 /27 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

E051 | Basic query specification

E@51-01 | SELECT DISTINCT

Yes | |
E@51-02 | GROUP BY clause
Yes | |
E@51-04 | GROUP BY can contain columns Not in <select-list>
Yes | |
E@51-05 | Select list items can be renamed
Yes | |
E@51-06 | HAVING clause
Yes | |
E@51-07 | Qualified * in select list
Yes | |
E@51-08 | Correlation names in the FROM clause
Yes | |
E@51-09 | Rename columns in the FROM clause
No | |
|
I I
E061 | Basic predicates and search conditions

EQ61-01 | Comparison predicate

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Yes | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

E@61-02 | BETWEEN predicate

Yes | |
E@61-03 | IN predicate with list of values

Yes | |

E@61-04 | LIKE predicate
Partial | Uses g-like syntax, replacing % with *: No underscore |
E@61-05 | LIKE predicate: ESCAPE clause

No | |
E@61-06 | NULL predicate

Yes | |
EQ61-07 | Quantified comparison predicate

Pending | |
EQ61-08 | EXISTS predicate

Yes | |
EG61-09 | Subqueries in comparison predicate

Yes | |
E@61-11 | Subqueries in IN predicate

Yes | |
E@61-12 | Subqueries in quantified comparison predicate

Pending | |
E@61-13 | Correlated subqueries

Yes | |
E@61-14 | Search condition

Yes | |

17 127 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

EQ71 | Basic query expressions

EQ71-01 | UNION DISTINCT table operator

E091-01 | AVG

Yes | |
E091-02 | COUNT

Yes | |
E091-03 | MAX

Yes | |
E091-04 | MIN

Yes | |
E091-05 | SUM

|

|

|

|

| Yes | |
| E@71-02 | UNION ALL table operator

| Yes | |
| E@71-03 | EXCEPT DISTINCT table operator

| Yes | |
| E@71-05 | Columns combined via table operators need Not have exactly the same
data type | Yes |

|

| E@71-06 | Table operators in subqueries

| Yes | |
| |

| | |
| E@81 | Basic Privileges

| No | |
| E@81-01 | SELECT privilege at the table level

| No | |
| E@81-02 | DELETE privilege

| No | |
| E@81-03 | INSERT privilege at the table level

| No | |
| E@81-04 | UPDATE privilege at the table level

| No | |
| E@81-05 | UPDATE privilege at the column level

| No | |
| E@81-06 | REFERENCES privilege at the table level

| No | |
| E@81-07 | REFERENCES privilege at the column level

| No | |
| E081-08 | WITH GRANT OPTION

| No | |
| E@81-09 | USAGE privilege

| No | |
| E@81-1@0 | EXECUTE privilege

| No | |
| |

| | |
| E@91 | Set functions

|

|

|

|

|

|

|

|

|

|

18 /27 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

Yes | |
E@91-06 | ALL quantifier
Pending | |
E@91-07 | DISTINCT quantifier
Yes | |
|
| |
El01 | Basic data manipulation

E101-01 | INSERT statement

Partial | See 'nulls' in compatibility Notes |

|

I

|

I

|

I

|

I

|

I

| Yes | |
| E101-03 | Searched UPDATE statement

| No | |
| E101-04 | Searched DELETE statement

| No | |
I I

| | |
| E111 | Single row SELECT statement

| Yes | |
I I

| | |
| E121 | Basic cursor support

| No | |
| E121-01 | DECLARE CURSOR

| No | |
| E121-02 | ORDER BY columns need Not be in select list

| Yes | |
| E121-03 | Value expressions in ORDER BY clause

| Yes | |
| E121-04 | OPEN statement

| No | |
| E121-06 | Positioned UPDATE statement

| No | |
| E121-07 | Positioned DELETE statement

| No | |
| E121-08 | CLOSE statement

| No | |
| E121-10 | FETCH statement: implicit NEXT

| No | |
| E121-17 | WITH HOLD cursors

| No | |
| E131 | Null value support (nulls in lieu of values)

|

I

|

| E141 | Basic integrity constraints

| No | |
| E141-01 | NoT NULL constraints

| No | |
| E141-02 | UNIQUE constraints of NoT NULL columns

| No | |

19/27 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

| E141-03 | PRIMARY KEY constraints

| No I I

| E141-04 | Basic FOREIGN KEY constraint with the No ACTION default for both
referential delete action and referential update action | No |

E141-06 | CHECK constraints

FO21-01 | COLUMNS view

Pending | |
FO21-02 | TABLES view

Yes | |
FO21-03 | VIEWS view

Pending | |
FO21-04 | TABLE_CONSTRAINTS view

No | |

|

I

| No | |
| E141-07 | Column defaults

| No | |
| E141-08 | NoT NULL inferred on PRIMARY KEY

| No | |
| E141-10 | Names in a foreign key can be specified in any order

| No | |
I I

| | |
| E151 | Transaction support

| No | |
| E151-01 | COMMIT statement

| No | |
| E151-02 | ROLLBACK statement

| No | |
| E152 | Basic SET TRANSACTION statement

| No | |
| E152-01 | SET TRANSACTION statement: ISOLATION LEVEL SERIALIZABLE clause
| No | |
| E152-02 | SET TRANSACTION statement: READ ONLY and READ WRITE clauses

| No | |
I I

| | |
| E* | other

| | |
| E153 | Updatable queries with subqueries

| No | |
| E161 | SQL comments using leading double minus

| Pending | |
| E171 | SQLSTATE support

| No | |
| E182 | Host language binding (previously "Module Language")

| Yes | Ccalled from g, can call q |
I I

| | |
| Fe21 | Basic information schema

|

I

|

I

|

I

|

I

|

20 /27 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

FO21-05 | REFERENTIAL_CONSTRAINTS view

No | |
F021-06 | CHECK_CONSTRAINTS view
No I I
I
I I
Fo31 | Basic schema manipulation

FO31-01 | CREATE TABLE statement to create persistent base tables
Partial | No persistence |
FO31-02 | CREATE VIEW statement

No | |
FO31-03 | GRANT statement

No | |
FO31-04 | ALTER TABLE statement: ADD COLUMN clause

No | |

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| F@31-13 | DROP TABLE statement: RESTRICT clause

| Partial | No restrict |
| F@31-16 | DROP VIEW statement: RESTRICT clause
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

No | |
FO31-19 | REVOKE statement: RESTRICT clause
No I I
|
I I
Fo41 | Basic joined table

FO41-01 | Inner join (but Not necessarily the INNER keyword)

Yes | |

FO41-02 | INNER keyword

Yes | |

FO41-03 | LEFT OUTER JOIN

Yes | |

FO41-04 | RIGHT OUTER JOIN

Yes | |

FO41-05 | Outer joins can be nested

Yes | |

FO41-07 | The inner table in a left or right outer join can also be used in an
inner join | Yes |

FO41-08 | All comparison operators are supported (rather than just =)
No | |
FO51 | Basic date and time

FO51-01 | DATE data type (including support of DATE literal)

Yes | |
FO51-02 | TIME data type (including support of TIME literal) with fractional
seconds precision of at least © | Yes |

| F@51-03 | TIMESTAMP data type (including support of TIMESTAMP 1literal) with

211727 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16
fractional seconds precision of at least @ and 6 | Yes |

FO51-04 | Comparison predicate on DATE, TIME, and TIMESTAMP data types

I

I

| Yes | |
| F@51-05 | Explicit CAST between datetime types and character string types
| Yes | |
| FO51-06 | CURRENT_DATE

| Yes | |

| FO51-07 | LOCALTIME

| Yes | |

| FO051-08 | LOCALTIMESTAMP

| Yes | |

| Fes1i | UNION and EXCEPT in views

| No I I
I I

I I I
| F131 | Grouped operations

| No I I
| F131-01 | WHERE, GROUP BY, and HAVING clauses supported in queries with grouped
views | No |

F131-02 | Multiple tables supported in queries with grouped views

F261-01 | Simple CASE

Yes | |
F261-02 | Searched CASE

Yes | |
F261-03 | NULLIF

Yes | |
F261-04 | COALESCE

Yes | |

|

I

| No | I
| F131-03 | Set functions supported in queries with grouped views

| No | |
| F131-04 | Subqueries with GROUP BY and HAVING clauses and grouped views

| No | |
| F131-05 | Single row SELECT with GROUP BY and HAVING clauses and grouped views
| No | |
I I

| | |
| F* | other

| | |
| F181 | Multiple module support

| No | |
| F201 | CAST function

| Yes | |
| F221 | Explicit defaults

| No | |
I I

| | |
| F261 | CASE expression

|

I

|

I

|

I

|

I

|

22 /27 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

|

|

| F311 | Schema definition statement

| No | |
| F311-01 | CREATE SCHEMA

| No | |
| F311-02 | CREATE TABLE for persistent base tables

| No | |
| F311-03 | CREATE VIEW

| No | |
| F311-04 | CREATE VIEW: WITH CHECK OPTION

| No | |
| F311-05 | GRANT statement

| No | |
| Fa71 | Scalar subquery values

| Yes | |
| Fas81 | Expanded NULL predicate

| No | |
| |

| | |
| Fse1 | Features and conformance views

| No | |
| F501-01 | SQL_FEATURES view

| No | |
| F501-02 | SQL_SIZING view

| No | |
| F501-03 | SQL_LANGUAGES view

| No | |
| F812 | Basic flagging

| No | |
| se11 | Distinct data types

| No | |
| se11-01 | USER_DEFINED TYPES view

| No | |
| |

| | |
| 1321 | Basic SQL-invoked routines

| | |
| T321-01 | User-defined functions with No overloading

| Yes | g fns can be converted to SQL fns with ~.s.fs® and added to ~.s.F |
| T321-02 | User-defined stored procedures with No overloading

| No | |
| T321-03 | Function invocation

| Yes | |
| T321-04 | CALL statement

| No | |
| T321-05 | RETURN statement

| No | |
| T321-06 | ROUTINES view

| No | |
|

T321-07 | PARAMETERS view

23 /27 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

| No | |
| 1631 | IN predicate with one list element
| Yes | |

*Legend:

Yes = fully supported

Partial = supported with limitations
Pending = under development

No = not supported

SQL in KDB-X Examples

These examples show how to run SQL queries in KDB-X. They include query patterns, execution methods,

parameter usage, integration with g, and error handling.

Run SQL

You can invoke SQL in several ways:

. prompt

. function

. interface
Use

Use the s) prompt to enter SQL interactively. Prefix your query with <) to run SQL instead of q.

q)t:([]a:)

s)select a from t

Example

gq)trips:([]date:2#.z.D;city: ldn ny)
S)SELECT * FROM trips WHERE date=.z.D

Use

Use to run SQL in the KDB-X process command line. Prefix the SQL query with and wrap it in

double quotes.

g)query:"select * from t"
g)result.s.e query
g)result

a

24 127 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

Parameter Description

Result set from the query.

SQL statement wrapped in double quotes.
This example demonstrates how to store the results of one SQL query in a variable and reuse it in another
query within KDB-X:
// select two fields and save them in variable x

X:.s.e"SELECT vendor, distance FROM trips WHERE distance<20"

// reuse x in another SQL statement
.S.e"SELECT * FROM x"

Parameters

Use parameters to provide values to predefined queries.

Execute directly

Use to inject g type parameters into SQL queries. Use £n notation in the query.

parsedquery:.s.sp[query](parameter 1list)

This example shows how to execute a parameterized SQL query in KDB-X by injecting q values into
placeholders using Here, the query selects rows from table t where s matches either or

and p is greater than

result:.s.sp["select a from t where s in $1 and p>$2"](AAPL GOOG;)

Single parameter queries

Convert a single parameter into a list because always expects a list.

.S.Sp["SELECT vendor, fare FROM trips WHERE fare>$1"]()

Prepare and execute

25127 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

Use to parse and prepare a parameterized query once. Then use to execute it multiple times
with different parameters.

parsedquery:.s.sq["select a from t where s in $1 and p>$2"](";0n);
rl:.s.sx[parsedquery] (" AAPL GOOG;)
r2:.s.sx[parsedquery](MSFT VOD;)

SQL parse tree

Use to display the SQL parse tree.

.s.prx"select * from trade where date='2021.11.23"' and symbol in ('XBTUSD')"

Integrate with q

You can run q functions inside SQL statements or create SQL functions from q functions.

Use

Use to call a g function that returns a table. You can only call in the clause.
s)select a from qt(f,x,y...)
This example shows how to query the result of a g function directly from SQL using

s)select a from qt('{gettable[$x;"D"$y;z]}"', 'AAPL"," ',1)

Use

Use to call g functions anywhere in a statement and return any q data type.
s)a(t,f,x,y..)

This example demonstrates how to use the function within an SQL statement to invoke g code directly
and return its result:

s)select q('J', "test',10,col) from t

Convert a g function into a SQL function

26 /27 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-16

Call to wrap a g function as a SQL function.
" .s.F[functionname]:.s.fx{code}
This example shows how to expose a g function so it can be called directly from SQL queries in KDB-X:

.S.F[fun]:.s.fx{x+1}
s)select fun(x) from qt('([])")

Error handling

SQL in KDB-X raises errors when you reference columns that do not exist or use unsupported syntax.

SELECT non_existing_column FROM trades;
-- Error: column found

27127 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

