KDB-X Public Preview 2025-10-17

REST Server Quickstart

This page explains how to initialize the REST Server, register endpoints, and expose your own functions over
HTTP.

Usage
To use the REST-Server module:
1. Load the the module.
2. Initialize the framework, using the function.
3. Register the endpoints, using the function.
4. (Optional) On a request to or , forward execution to to process

the incoming request and return the result.

Note: "Note" The examples below assume a namespace, which aliases

"~ “bash
.com_kx_rest:use kx.rest;

Initialize the REST server framework

Before registering endpoints, initialize the REST Server:

/ Alias namespace for convenience, typically once at beginning of file
.rest:.com_kx_rest

/ Initialize the framework with autoBind enabled

.rest.init [TautoBind]! [1b] / Initialize
Use the function to initialize the framework. Call it without arguments (for example
) for minimal setup, or as a unary (with a dictionary argument) to perform further steps
such as auto-binding to and (as in the above example).
With the option specified as 1b, if no endpoint matches a request, the server delegates to the next
handler (if applicable). Conversely if is not specified (or specified as ©b), unmatched requests return

an HTTP 404 code.

Note that when auto-binding is disabled, the application binds to and ,
and performs any chaining as needed.

Register the endpoints
Endpoints map HTTP methods and URL paths to g functions.

1/32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

Here is an example with two endpoints:

// Register endpoints
.rest.register[get;
"/customers";
"Returns all customers";
.db.getAllCustomers;
.rest.reg.data["i;-6h;0b;0;"0ffset to first row"],
.rest.reg.data[cnt;-6h;0b;10;"Number of rows to return"]]

.rest.register[get;
"/customers/{id}";
"Returns one or more customers by their IDs";
.db.getCustomersByld;
.rest.reg.data[id;6h;1b;0;"0One or more customer IDs"]]

After we initialized the framework with set to 1b, we created two endpoints, as follows:

This endpoint returns all customers. It expects two parameters:

- i (integer)’ is the offset of first row to return
- “cnt (integer)” is the number of rows to return

Both parameters are optional, and have default values of © and ¢ respectively. The endpoint is mapped to
the function, which might be defined as follows:

q
.db.getAllCustomers:{

x[Targ; cnt]#select from customers where i>=x["arg; i] }

To query the endpoint, run the following command:

* " “bash
curl 'localhost:8080/customers’
curl 'localhost:8080/customers?i=10&cnt=10"

This endpoint returns one or more customers based on their IDs. It expects one parameter:
, Which is an input parameter in the form of a path variable. The value of this parameter is

2 /32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

determined at matching time. The endpoint is mapped to the function, which might
be defined as follows:

q
.db.getCustomersById:{

select from customers where id in x[arg; id] // should be in ID order

How to register endpoints

Use the function to register an endpoint. The registration contains the following

components:

® The operation and path of the endpoint

® A description summarizing the purpose of the endpoint

* The handler function

* Optional definition of user input, which includes: path variables, query string, headers, and request
body (for / based endpoints)

® Optional definition of result object

The operation is arbitrary and refers to the action being performed, typically one of the standard HTTP
methods defined by the REST architecture:

The path is the part of the URL that follows the host and port (for example,). It identifies the
resource targeted of the operation. Paths can be customized and may include variables that act as parameters
to the endpoint. For example, is a valid path that has a variable named

The handler function is responsible for performing the activity of the endpoint. It works as follows:

User input definitions specify the properties of the expected input parameters which include:

® path-variables and query-string (using)
® headers (using)
® JSON-based request body (using).
For example, the request has the following input parameters: x, v, 1, and

You can specify the name, data type, necessity, default value, and description of each parameter.
The framework uses this information to:

* Ensure the required parameters are supplied in the request, failing the request if any is missing
® Parse the value using the expected data type

3/32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

The handler also has access to the raw user input, which is useful when some or all of the input values are
unknown at the time of registration.

Output definition specifies the schema of the result (using). The framework
doesn't currently use the definition, but it is good practice to specify it for future purposes.

Request processing
An HTTP request contains the following components:

¢ HTTP method
* Path

® Query string
e HTTP headers

® Request body (applies to , ,and)
The HTTP method generally specifies the REST operation; in KDB-X, it is limited to and . Thus, the
framework looks for the operation in the HTTP header, and if not present defaults to (for

), or (for). It is thus important to use a front-end API gateway (like the AWS HTTP API

gateway) that can populate HTTP header, and convert , and HTTP methods to ,
leaving requests as they are. Refer to the request handling for details.
When a request is received, both and are combined to find a matching endpoint, favoring
exact matches over ones containing variables (for example, Vs).

User input is then processed, distinguishing between the following categories:

® User input specified using the function. These contain path variables (like
in) and query-string parameters. Values are parsed according to their datatype. If a
parameter is missing from the request, then its default value is used. But if the missing parameter is
marked required, then the request fails with 400 HTTP status code (with the names of the missing
required parameters included in the response). Values of input parameters are passed to the handler
function as dictionary under key. Note that raw input parameters (as they appear in the request)
are also passed to the handler function under the key.

® Request body (where applicable) is expected to be in JSON format. It is deserialized into a KDB-X data
structure using , and passed to the handler function under key.

* Request body (in case of or operation) is expected to be in JSON format. If the endpoint has
body input specified using the function, then the elements of the defined
object are parsed from the input (including nested objects) according to their datatypes and necessity
settings. Similar to input parameters, the raw body is passed to the handler under key.

® HTTP headers are passed untouched to the handler function under key.

After input is collected, the handler function is invoked. If the function is declared to take arguments with the
same names as the endpoint parameters (or if endpoint is comprised only of a parameter), then
the function is variadically invoked with its arguments mapped from the request input. Otherwise, the function
is invoked as a unary with a dictionary containing the following keys:

® REST operation of the endpoint
4 /32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

https://code.kx.com/q/kb/http/#request-handling

KDB-X Public Preview 2025-10-17

* The path of the endpoint

* Values of processed input parameters

* Raw input parameters present in the request

* Value of processed body object, which is typically a dictionary if the body is of an object type, but can
be of any type as specified by function.

* Raw KDB-X form of the request body (if present)

® HTTP headers

The handler function is expected to return its response in one of the following forms:

* A KDB-X data structure (typically a dictionary or a table), which is serialized to JSON by the framework
before being returned to the client

® Result of the function, which gives the handler control over the HTTP
status code, and content type of the response (available post release 1.0.0)

® Result of the function, which gives the handler total control over
the response

* |f there is a problem with input, the handler must call to signal an error

REST Server Examples

This page provides some examples on how to use the REST server in KDB-X.

Customers

This section demonstrates a sample REST server with various styles of REST endpoints, including static,
dynamic, and API-like patterns. See how to register endpoints and handle different types of RESTful requests
in KDB-X.

Static

resource names are predefined at endpoint registration time, for example
Dynamic

the resource name (or part of it) is supplied at call-time, for example
API-like

same as static but uses verbs instead of names, for example

.com_kx_rest:use kx.rest;
.rest:.com_kx _rest; / Alias namespace for convenience

//
// @desc App initialization.

5/32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

//
init:{
.rest.init[enlist[autoBind]!enlist[1b]]; / Initialize
initStatic[]; / Sample static endpoints
initDynamic[]; / Sample dynamic endpoints
initApi[]; / Sample API-like endpoints
.rest.register[get;"/help"; / Returns information about registered endpoints
"Retrieves information about registered REST endpoints";
{.rest.t};
0O
.rest.register[get;"/hc"; / health-check
"health-check endpoint";
{llokll};
0oL
.rest.register[get;"/_ping";
"for testing";
{"pong"};
0OMO5 3
//
// Sample parameter subset to support paging.
//

pagingParams:.rest.reg.data[1;-6h;0b;0;"0ffset of first row"],
.rest.reg.data[cnt;-6h;0b;10; "Number of rows to return"];

//

// Wraps “# to limit to data size.
//

take:{[n;dImin[(n;count d)]#d}

//
// Initialization examples.

//

//
// Static endpoints, and various styles of versioning.
//
initStatic:{
.rest.register[get;"/customers";
"Returns all customers";
{take[x[arg; cnt]]select from customers where i>=x["arg; i]};
pagingParams

15

.rest.register[get;"/customers.2";
"Returns all customers (version 2)";
{take[x[arg; cnt]]update newCol:1 from select from customers where

6 /32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

i>=x["arg; 1i]};
pagingParams

15

.rest.register[get;"/v3/customers";
"Returns all customers (version 3)";
{take[x[arg; cnt]]update newCol:1, newCol2:10 from select from customers
where i>=x["arg; il};
pagingParams

15

.rest.register[get;"/customers/{id}";
"Returns one or more customers by their IDs";
{select from customers where id in x[arg; id]};
.rest.reg.data[id;6h;1b;0ONi;"One or more customer IDs"]

15 }

initDynamic:{

.rest.register[get;"/db";
"Retrieves list of table names";
{tables[]};

0o
15

.rest.register[get;"/db/{table}";
"Retrieves a table";
.tbl.getData;
.rest.reg.data[table;-11h;1b; ;"Table name"],
pagingParams

15

.rest.register[get;"/db/{table}/meta";
"Retrieves metadata of a table";
{0!meta x[arg; tablel};
.rest.reg.data[table;-11h;1b; ;"Table name"]

15

.rest.register[get;"/db/{table}/{col}";
"Retrieves a column subset of a table";
.tbl.getData;
.rest.reg.data[table;-11h;1b; ;"Table name"],
.rest.reg.data[col;11h;1b;0# ;"Result columns"],
pagingParams

15 }

initApi:{
.rest.register[get;"/getCustomers”;
"Returns all customers";
{([] id:til 1@0; nm:10?°5)};

7132 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

15}
//
// Automatic data retrieval
//
//
// @desc Generic data retrieval handler. Look for {tbl}, {id}, and {rel} arguments
//

.tbl.getData:{
tn:x[arg; table];
i :$[°1i in key x[arg];x[arg; i];@];
cnt:$[cnt in key x[arg]l;x[arg; cnt];OW];

if[not tn in tables[]; 'table]; / Check whether table exists

w:$[""~ON!flt:x[data];();enlist parse flt]; / If request is a POST, then data
is expected to be the where clause

c:$[col in key x arg;{x!x}x[arg; col];()]; / Columns to retrieve

take[cnt]select from ?[tn;w;0b;c] where i>=i_ }

init[]

//
// Test data
//
n:100
customers:([] id:1+til n; name:n?"7)
sn: aapl goog msft nke ftse
symbols:1!([] sym: aapl goog msft nke ftse; src:count[sn]? 8);
trades:([] ts:$[12h;.z.d]+$[minute;1]*til n;
sym:n?(0!symbols)[sym];
price:n?10.0;
size:n?1000)

This section provides the full definition of an example client that interacts with the REST server. It relies on the
module. It shows how to connect, create resources, submit queries, and check job status using q code
and HTTP requests.

q
.kurl:use kx.kurl

if[not “server in key .Q.opt .z.x;
server:first @[; server] .Q.opt .z.x

Provide -server http://host:port"]

// Wait forever until health check returns true.

8/32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

while[200 <> first @[.kurl.sync;(server,"/v1l/hc"; GET;::);{(-1;"")}];
system "sleep 1"]

// Create a new project folder

body: .j.j “name dir!("myProject";"projFolderl")

headers: ("http-method"; "Content-Type")!("POST";"application/json™)
resp:.kurl.sync (server,"/vl/projects"; POST; body headers! (body;headers))
if[200 <> first resp; 'last resp]

project:.j.k last resp

-1 "Created ", project “name;

projectID:string project "id

// Create an empty database folder
body: .j.j enlist[name]!enlist "db1l"

resp:.kurl.sync (server,"/vl/projects/",projectID,"/databases";
“POST;
“body headers! (body;headers))

if[200 <> first resp; 'last resp]
database:.j.k last resp
databaseID:database "id

// Create a random partitioned table using JSON

// Note that this is just for demonstrations sake

// instead of calling this API, you may mount a db externally on the server
n:1000

t:([]
date:n?2021.01.01 2021.01.02 2021.01.03;

X: n?loof;
y: n?@b)

resp:.kurl.sync
(ON!server,"/vl/projects/",projectlD,"/databases/",databaseID,"/tables";
“POST;

“body headers!(.j.j “name table! (" t;t);headers))

if[200 <> first resp; 'last resp]

// Submit a query job

body:.j.j query databaselID!("select from t"; databaseID)

resp:.kurl.sync (server,"/vl/projects/",projectID,"/jobs";
“POST;
“body headers! (body;headers))

if[200 <> first resp; 'last resp]

job:.j.k last resp

jobID:string job "id

// Check on the job
resp:.kurl.sync (server,"/vl/projects/",projectID,"/jobs/",jobID; GET;::)

9/32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

if[200 <> first resp; 'last resp]

This section demonstrates a REST server capable of running asynchronous query jobs. It explains the server's
resource organization, usage patterns, and how to register endpoints for managing projects, databases,
tables, and jobs.

Jobs are run in worker processes that execute arbitrary gSQL and trigger a callback when done. A REST Client
is expected to poll for async job results.

Resources for the server are organized as a list of projects containing lists of databases.
Databases are organized as a list of tables.

Usage patterns:

GET /vl1/hc Simply
health check

GET /v1/projects List all
projects

GET /v1/projects/{projectID} List one
project's attributes

GET /vi1/projects/{projectID}/databases List all
databases for projectID

GET /vil/projects/{projectID}/databases/{databaseID} List one
database's arrtibutes

GET /v1/projects/{projectID}/databases/{databaseID}/tables List all

tables for projectID + databaseID
GET /v1/projects/{projectID}/databases/{databaseID}/tables/{tableID} List table

arributes

POST /v1/projects Create a
new project

POST /vl/projects/{projectID} Update a
project (rename/delete)

POST /vl/projects/{projectID}/databases Create a
database

POST /vl/projects/{projectID}/databases/{databaselD} Update a
database

POST /vl/projects/{projectID}/databases/{databaseID}/tables Create a
table

POST /vl/projects/{projectID}/databases/{databaseID}/tables/{tableID} Update a
table

GET /v1/projects/{projectID}/jobs/ List all
running queries

POST /vl1/projects/{projectID}/jobs/ Run a new
query

GET /vi1/projects/{projectID}/jobs/{jobID} Check on

the status of a job

10/32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

GET /v1/projects/{projectID}/jobs/{jobID}/results Get the
JSONified query results

q
.com_kx_rest:use kx.rest; // load the module

.rest:.com_kx_rest / Make an alias for convenience
.rest.init[enlist[autoBind]!enlist[1b]];

// Querystring params

\d .demo

param.projectID:.rest.reg.data[projectID;-7h;1b;0;"Project ID"]
param.databaseID:.rest.reg.data[databaseID;10h;1b;"";"Database ID"]
param.tableID:.rest.reg.data[tableID;10h;1b;"";"Table ID"]
param.jobID:.rest.reg.data[jobID;-7h;1b;0;"Job ID"]

// Body params

.rest.reg.object[project;

.rest.reg.data[name;-11h;0b; ;"Project name"],
.rest.reg.data[dir;16h;0b;"";"Project directory”]]
.rest.reg.object[database;

.rest.reg.data["name;-11h;0b;" ;"Database name"]]
.rest.reg.object[table;

.rest.reg.data[name;-11h;0b; ;"Table name"],
.rest.reg.data[table;98h;0b; ([] x:());"Table content"]]
.rest.reg.object[job;

param.databaseID,

.rest.reg.data[query;10h;0b;"";"q query"]]

param.project:.rest.reg.body[project;0b;::;"Project information"]
param.database:.rest.reg.body[database;@b;::;"Database information"]
param.table:.rest.reg.body[table;@b;::;"Table information"]
param.job:.rest.reg.body[job;@b;::;"Job information"]
.rest.register[get;"/vl/hc";"simple healthcheck";{"ok"};()!()1];

// GETTER API
.rest.register[get;
"/vl/projects”;
"List all projects”;
{.demo.projects};

.:]

.rest.register[get;

"/vl/projects/{projectID}";

"List one projects attributes”;

{first select from .demo.projects where id = x[arg; projectID]};
param.projectID]

11/32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

.rest.register[get;
"/vl/projects/{projectID}/databases";
"List all databases for a project”;
{.demo.findDB};

param.projectID]

.rest.register[get;
"/vl/projects/{projectID}/databases/{databaseID}";
"List a databases attributes"”;
{

db:.demo.findDB x;

enlist[name]!enlist db "h

s

param.projectID,param.databaselD]

.rest.register[get;
"/vl/projects/{projectID}/databases/{databaseID}/tables";
"List all tables in a database"”;

{
db:.demo.findDB x;
key db "h
s

param.projectID,param.databaselD]

.rest.register[get;
"/vl/projects/{projectID}/databases/{databaseID}/tables/{tableID}";
"List table attributes”;

{' "notImplemented};

param.projectID,param.databaselD,param.tablelD]

// CREATE APIs
.rest.register[post;
"/vl/projects”;

"Create a new project”;

{
system "mkdir -p ",di:projRoot,x[data; dir];
.demo.projects,:
“name”id dir created! (x[data; name];count .demo.projects;di; .z.p);
:last .demo.projects
}s

param.project]

.rest.register[post;
"/vl/projects/{projectID}";
"Update a project”;

{' "notImplemented};
param.projectID]

.rest.register[post;
"/vl/projects/{projectID}/databases";
"Add a database to a project”;

12 /32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

{
proj:.demo.findProject x;
dbh:hsym “$db:proj[dir],"/",string n: x[data; name];
if[() ~ key dbh; system "mkdir -p ",db];
:enlist[id]!enlist n
¥

param.projectID,param.database]

.rest.register[post;
"/vl/projects/{projectID}/databases/{databaseID}";
"Rename or delete a database";

{"not implemented"};
param.projectID,param.databaselD]

.rest.register[post;
"/vl/projects/{projectID}/databases/{databaseID}/tables";
"Add a table to a database";

{ .demo.writePar x };
param.projectID,param.databaselD,param.table]

.rest.register[post;
"/vl/projects/{projectID}/databases/{databaseID}/tables/{tableID}";
"Add or overwrite dates in a table";

{ " notImplemented};
param.projectID,param.databaseID,param.tableID]

// JOB API

.rest.register[get;"/vl/projects/{projectID}/jobs";

"List all jobs for a project”;

{select from .demo.jobs where projectID = x[arg; "projectID];};
param.projectID]

.rest.register[post;
"/vl/projects/{projectID}/jobs";
"Submit a query job";

{
proj:findProject x;
avail:first .demo.workers except exec worker from .demo.jobs;
db:proj[dir],"/",x[data; databaseID];
neg[avail] (" .demo.runQuery; db; x[data; query]);
.demo. jobs, :”id worker projectID status!(count .demo.jobs;
avail;proj "id; active);
:last .demo.jobs
¥

param.projectID,param.job]

.rest.register[get;
"/vl/projects/{projectID}/jobs/{jobID}";
"List details of a job";

{findJob x};
param.projectID,param.jobID]

13 /32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

.rest.register[get;
"/vl/projects/{projectID}/jobs/{jobID}/results";
"Get results for a finished job";

{
job:select from findJob[x] where status="done;
if[1 <> count job;'"Job not finished"];
job[worker] ".demo.results"

s

param.projectID,param.jobID]

projRoot:system["cd "],"/exampleProjects/"
projects:([] name:(); id:"j"$(); dir:(); created:"p"$())

findProject:{
proj:select from .demo.projects where id = x[arg; projectID];
if[@ = count proj; No such project ", x[arg, "projectID]];
:first proj; }

findDB: {
proj:findProject x;
dbh:hsym “$db:proj[dir],"/",n: x[arg; databaselD];
if[() ~ key dbh;'"Database does not exist: ", n];
:"name h!(n;dbh) }

findJob:{
select from .demo.jobs where projectID = x[arg; projectID],
id = x[arg; jobID] }

writePar:{

db:findDB x;

name:x[~data; name];

t:x[data; table];

t[date]:"D"$t "date;

a:cols[t] except "date;

kt:?[t;(); date;ala];

(" $string key[kt]) {[root;name;date;d]
(" sv root,date,name,) set flip d
}[db “h;name]"' value kt;

:name }

done:{ .demo.jobs:update status: done from .demo.jobs where worker = .z.w;}
maxWait:00:00:05

i:0

n:10

workers: ()

jobs:([] id:"j"$(); worker:"I"$(); projectID:"j"$(); status: $())

\d .

.z.po:{.demo.i+:1;}
.z.ts:{[start;now]

14 /32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

if [now > start + .demo.maxWait;
-2 "Took longer than ",string[.demo.maxWait],
" to start ",string[.demo.n],"
-2 "Exiting...";
exit 1];
// Clear timer and uninstall .z.po
if[.demo.n = count .z.W;
system "t @";
.z.po:{};
.demo.workers:key .z.W]

M.z.p;5]

workers";

do[10; system "q queryworker.q -server
\t 1000

',string system "p"]

This section provides the full definition of the example REST server’s worker processes. These workers execute
query jobs submitted to the server and return results asynchronously.

This process should be started automatically by the REST server example

Copy this into your present working directory when running the REST server.

\d .demo

h:-13i

lastresult: ()

.z.pc:{if[x ~ h; exit 0];}

if[“server in args:.Q.opt .z.x;
"Server port required with -server <port>";
exit 1]
h: “¢$":localhost:", args " server

runQuery:{[dbpath;query]
"1l ",dbpath;
lastResult:: query;
.z.w (" .demo.done; 1b); }

\d .

OpenAPI example

This section contains an OpenAPI 3.0 specification for the REST server shown in the example on how to
expose a RESTful interface. You can use this specification to import the API into tools that support OpenAPI,
making it easier to explore and test the endpoints.

15/32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

To use this in examples, copy the content below to a local JSON file, and import it into the relevant portal.
Replace the example with your server URL.

You can probably edit this after the fact in the portal’s Ul

"7 json

"openapi": "3.0.1",
"info": {
"title": "kdbx-rest-test-api",

"description”: ,

"version": "1.0"
¥
"servers": [
{
"url": "https://example.azure-api.net"
}
1,
"paths": {
"/customers": {
Ilgetll: {

"summary": "customers",

"description": "Returns all customers",
"operationId": "customers",
"parameters”: [

{
"name": "i",
"in": "query",
"description": "Offset of first row",
"schema": {
"type": ""
}
¥
{
"name": "cnt",
"in": "query",
"description”: "Number of rows to return",
"schema": {
"type": ""
}
}
1,
"responses”: {
"200": {
"description”: null
}
}

}

16 /32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

¥
"/customers.2": {
"get": {
"summary": "customersdotv2",
"description": "Returns all customers (v2)",
"operationId": "customersdotv2",
"parameters”: [

{

llnamell: IlillJ
llinlI: Ilquer\yll’
"description”: "Offset of first row",

"schema": {
lltypell :

"name": "cnt",

"in": "query",

"description”: "Number of rows to return",
"schema": {

"typ@":

1,

"responses”: {
Ilzeell : {
"description”: null

¥
"/v3/customers": {
"get": {
"summary": "customersv3",
"description”: "Returns all customers v3",
"operationId": "customersv3",
"parameters”: [

{

llnamell: IlillJ
llinlI: Ilquer\yll’
"description”: "Offset of first row",

"schema": {
lltypell :

"name": "cnt",

"in": "query",

"description”: "Number of rows to return",
"schema": {

"typ@":

17 /32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

}
}
1,
"responses”: {
"200": {
"description": null
}
}
}
}J
"/customers/{id}": {
"get": {
"summary": "customerbyid",
"operationId": "customerbyid",
"parameters”: [
{
"name": "id",
"in": "path",
"description”: "Customer ID",
"required": true,
"schema": {
"type": "string"
}
}
1,
"responses”: {
"200": {
"description": null
}
}
}
}J
"/db": {
"get": {
"summary": "db",
"description"”: "Retrieve list of table names",
"operationId": "db",
"responses”: {
"200": {
"description": null
}
}
}
}J
"/db/{table}": {
"get": {

"summary": "tablebyid",
"operationId": "tablebyid",
"parameters”: [

{

"name": "table",

18 /32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview

"in": "path",
"description”: "Table name",
"required": true,
"schema": {
"type": "string"
}
¥
{
"name": "i",
"in": "query",
"description”: "Offset of first row",
"schema": {
"type": ""
}
¥
{
"name": "cnt",
"in": "query",
"description”: "Number of rows to return",
"schema": {
"type": ""
}
}
1,
"responses”: {
"200": {
"description”: null
}
}
}
¥
"/db/{table}/meta": {
"get": {

"summary”: "tablemeta",
"description”: "Get table meta",
"operationId": "tablemeta",
"parameters”: [

{
"name": "table",
"in": "path",
"description”: "Table name",
"required": true,
"schema": {
"type": "string"
}
}
1,
"responses”: {
"200": {
"description": null
}

19/32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

2025-10-17

KDB-X Public Preview 2025-10-17

}
}
s
"/db/{table}/{col}": {
"get": {
"summary": "column",
"description”: "Get a subset of a column",
"operationId": "column",
"parameters”: [
{
"name": "table",
"in": "path",
"description”: "Table name",
"required": true,
"schema": {
"type": ""
}
s
{
"name": "col",
"in": "path",
"description”: "Column name",
"required": true,
"schema": {
"type": ""
}
s
{
"name": "i",
"in": "query",
"description”: "Offset of first row",
"schema": {
"type": ""
}
s
{
"name": "cnt",
"in": "query",
"description”: "Number of rows to return",
"schema": {
"type": ""
}
}
1
"responses”: {
"200": {
"description”: null
}
}
}
}s

20 /32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

"/help": {
"get": {
"summary": "help",
"description”: "List all endpoints"”,
"operationId": "help",
"responses”: {
"200": {
"description": null

}
}
}
}J
"/getCustomers": {
"get": {
"summary": "getCustomers",
"description”: "API like example endpoint that returns all
customers"”,
"operationId": "getcustomers",
"responses”: {
"200": {
"description”: null
}
}
}

Expose a RESTful interface

This section provides an example of exposing a RESTful APl to a KDB-X-based system.
We load the REST server library and create a simple API and async query server.
Example customers API

Create from the source in the customers example.

Run ¢ in the current directory and load the REST server module followed by

q -p 8080
.com_kx_rest:use kx.rest;
\1l customers.q

In another terminal run:

21732 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

curl http://localhost:8080/customers

[{"id":1,"name":"milglie"},{"id":2,"name" :"igfbage"},{"id":3,"name": "kaodhbe"},

{"id":4,"name" :"bafclbi"},{"id":5, "name" : "kfhogjn"},{"id":6,"name":"jecpaen"},
"id":7,"name":"kfmohpi"},{"id":8, "name":"1lkklcoi"},{"id":9, "name": "kfifpag"},

{"id":10, "name":"fglgofj"}]

curl http://localhost:8080/db/customers/meta
[{II Il.llldll ll ll:lljll II_FII.IIII II II.IIII} {Il ll.llname")lltll:IISII,II_FII:IIIIJIIaII:IIII}]

curl http://localhost:8080/getCustomers
[{"id":0,"nm" :"mpnan"},{"id":1,"nm" :"nogel"},{"id":2,"nm" :"holpj"},

w,n

Ilidll:3,llnmll:llkk_Fpnll}J{llidll: , nmll.llpeginll} {Ilidll. , nm . chnmll}J
{llidll:6’llnmll:lldlhepll}){llidll: , nm"'"cmejl } {llldll. , r]mll:llb_FmJ'_Fll})
{"id":9,"nm":"1cicg"}]

For a full overview of the server and the concepts introduced, see the customer example server.

Protecting a backend API

We can provision a protected public gateway to allow access to the private HTTP backend.

With the customers APl example, you should have your server exposed on port 8080.

The guides below will look for an HTTP backend endpoint, this is the host and port of the Customers example.

To follow along, run the HTTP customers example on a VM instance and expose port 8080. We will then use a
gateway to secure access to the REST server running on 8080.

In practice, you will want 8080 exposed to the virtual network the gateway is on, but not externally to the
wider Web.

Tip:"Custom HTTP headers"

Your HTTP backend and Gateway should also consider requiring custom headers of
your own design to quickly ignore foreign requests. This is not covered by the
guides below.

Amazon APl Gateway

Amazon API Gateway can be used to secure a REST API backend.

Start up a VM instance and run the customers example on port 8080 and expose port 8080 on the VM's

network.

Now use Amazon APl Gateway to secure access to the customers APl backend by importing an API

configuration:

Setting up Amazon API Gateway

22132 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

https://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started.html

KDB-X Public Preview 2025-10-17

A sample OpenAPI 2.0 configuration for the customers API is included from the appendix.
After importing the API configuration, create a stage and name it kxce-stage.

The kxce-stage should define a single stage variable , and the value should be the URL of the
customers backend.

Detail: "Set this variable to the URL without the protocol prefix"

For example, set "httpUrl® to "myserver.com , not "http://myserver.com .

After deploying the stage, your API will be accessible over HTTPS using the Stage URL; however it will not
require authentication.

To require authentication to use an API, see See Amazon API Gateway Authentication.

To use IAM for authentication, attach an IAM Authenticator under Develop > Routes.
Azure APl Management

Warning: "Azure Active Directory is now known as Microsoft Entra ID"

Azure APl Management service instances can be used to create a gateway to allow access to one or more
REST endpoints.

See Azure APl Management Key Concepts

To protect your APl backend, we recommend using Microsoft Entra ID as the OAuth2 provider when using the
APl Management Service.

If you do not already have a Microsoft Entra tenant, and an Azure APl Management service instance running,
create new ones. Note that this might take a while. The name of your Azure APl Management service instance
becomes part of the gateway URL.

Start up a VM instance and run the customers example on port 8080 and expose port 8080 on the VM's
network.

We use Azure APl Management to secure access to the customers API backend.
Once the Azure APl Management Instance is up, import the sample OpenAPI JSON from the appendix.

After importing the API, click on the API's Design tab, and enter the Customer examples HTTP backend
endpoint URL for all operations.

With this alone, you should now be able to access your REST server from the APl Management gateway URL,
which at the time of writing is shown in the APl Management Overview.

The APIs are still unauthenticated at this point, however the Gateway should be functional.

Once you have a Microsoft Entra tenant running, go to App Registrations and follow the instructions for
making an APl and a client app.

23/32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-control-access-to-api.html
https://docs.microsoft.com/en-us/azure/api-management/api-management-key-concepts
https://docs.microsoft.com/en-us/azure/api-management/api-management-howto-protect-backend-with-aad

KDB-X Public Preview 2025-10-17

Be sure to follow the last step: without it, OAuth2 is confusingly enabled, yet not required.

Note: "Note" At the time of writing, that last step mentions editing a policy in raw XML. You may also edit the
policy visually in the current Ul, under Inbound Processing, in the Design tab, adding a type

policy.

After you have the backend protected as described in the Azure walkthrough, you might want to replace the
step where you treat the Azure API Portal as the app, instead using something like as the client app.

Google Cloud API Gateway

Google API Gateway can be used to secure a REST API backend.

Start up a VM instance and run the customers example on port 8080 and expose port 8080 on the VM's
network.

We will now use Google API Gateway to secure access to the customers APl backend by importing a
configuration.

See Setting up Google API Gateway

Note: "Installing Google APl Gateway in the Console"

If you have not done so before, opening Google API Gateway in the Cloud Console
will have you “install” and accept a user agreement.

Once you have Google AP| Gateway opened in the Google Console, you can import an API config.

When asked to import a configuration, you can use the sample OpenAPI 2.0 configuration for the customers
API. Make sure to replace the address with the address of your VM running the REST

server demo.
When asked to create a Gateway, you name it , and choose a region.

Once Google finishes uploading your API, make a request to

https://GATEWAY_URL/customers

to use the customers API, where is the URL listed in the Google Console’s Gateway tab.

For example, the generated gateway URL would look like:

https://kxce-gateway-5uoiifib.ue.gateway.dev/customers

Your APl is now accessible over HTTPS using the Gateway; however it is not yet secured.

To secure the API, read about the options Google provides.

24 132 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

https://docs.microsoft.com/en-us/azure/api-management/api-management-howto-protect-backend-with-aad#configure-a-jwt-validation-policy-to-pre-authorize-requests
https://cloud.google.com/api-gateway/docs/quickstart-console

KDB-X Public Preview 2025-10-17

* For simplicity, and to complete this demo, follow the steps for securing with an API Key

* For further authentication options, instead of using API keys, see Authenticating with a Service Account

REST-Server Library APl Reference

This page introduces the REST-Server module APl Reference for the namespace. It explains the
available functions, utilities, and registration methods for working with the REST server APl in KDB-X. Find
details on initialization, endpoint registration, request processing, and utility functions, along with usage

examples.
.com_kx_rest.
Initialization init initialize the namespace

Registration register register an endpoint reg.data define a data item: input parameter or object member
reg.header define a HTTP-header based input parameter reg.body define the expected POST body in the

request reg.output define the output of the endpoint reg.object define an object for use as data element,
body, or output reg.default get object populated with default values

Utilities util.throw throw an error util.response construct response util.nttpResponse construct HTTP response
Request processing process process an incoming HTTP request

The examples on this page assume the following namespace alias has been created for convenience.

.rest:.com_kx_rest

Initialize the library namespace

Parameters:

opts {dict} Optional dictionary containing the following:

audoBind {bool} Whether to automatically bind "~ .z.ph™ and
“.z.pp handlers.

appendNewline {bool} Whether to append newline at the end of
every JSON response (except when the handler returns custom response).

Where called as a nullary, minimally initializes the namespace.

Where called as a unary with dictionary , initializes the namespace with further steps according to entries

in

autoBind whether to automatically bind .z.ph and .z.pp handlers (boolean)

25/32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

https://cloud.google.com/api-gateway/docs/quickstart-console#securing_access_by_using_an_api_key
https://cloud.google.com/api-gateway/docs/authentication-method#service_accounts

KDB-X Public Preview 2025-10-17

Note: " "

When true (T1b°) an incoming request is delegated to the next handler (if present)
if it cannot be matched to an endpoint.

Otherwise a request that does not match an endpoint is rejected with HTTP code
404 .

Examples:

.com_kx rest.init[]
.com_kx_rest.init [autoBind]! [1b]

Process an incoming HTTP request

.com_kx_rest.process[method;request]

Where

. is one of (symbol atom)

. is an HTTP request (list of strings)
processes the HTTP request according to its custom header (if present), otherwise according to
the value of

Example: set the REST processor as the kdb+ handlers for HTTP GET and POST calls:

.z.ph:.rest.process[GET;]
.z.pp:.rest.process[POST;]

Refer to:

Define the input request body expected by the post-based endpoint

.com_kx_rest.reg.body[typ;isReq;dfv;dscr]

26 /32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

https://code.kx.com/q/ref/dotz/#zph-http-get
https://code.kx.com/q/ref/dotz/#zpp-http-post

KDB-X Public Preview 2025-10-17

Where
typ name of object (defined using .com_kx_rest.reg.object) (symbol)
isReq whether the body is required (bool)
dfv default value, of a type compatible with the object (any)
dscr human-readable description (string)

defines the input request body expected by the post-based endpoint.

Example: create a new customer object

.rest.reg.object[customerObj;
.rest.reg.data[id;-6h;1b;0N; “"Customer ID"],
.rest.reg.data[name;10h;1b;"";"Customer name"]]

.rest.register[post;"/customers";
"Creates one or more customers";

{ customers upsert cols[customers]#x data;count customers};
.rest.reg.body[customerObj;lb;::;"One or more customer object"]]

Register a data item

.com_kx_rest.reg.data[nm;typ;isReq;dfv;dscr]

Where
nm name of parameter/item (symbol)
typ q datatype, or object name (defined using
.com_kx_rest.reg.object) (short|symbol)
isReq whether parameter is required (boolean)
dfv default value, which must be of typ (any)
dscr human readable description (string)

defines a data item that can be used as one of

* a path-parameter or query-string based input parameter (when invoked in the context of specifying
argument of function)
* an element of an object (when invoked in the context of specifying argument of
function)

27132 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

Construct an object using the default values of its elements

.com_kx_rest.reg.default nm

Where nm (symbol) is the name of an object, constructs it using the default values of its elements.

This is useful as the default value of an input parameter object.

See for an example.

Define a header-based input parameter

.com_kx_rest.reg.header[nm;typ;isReq;dfv;dscr]

Where
nm name of parameter/item (symbol)
typ q datatype, or object name

defined using .com_kx_rest.reg.object (short|symbol)
isReq whether parameter is required (boolean)
dfv default value, which must be of a type that is compatible with “typ~ (any)
dscr human-readable description (string)

defines a header-based input parameter.

Register an object

.com_kx_rest.reg.object[nm;items]

Where

nm name of object, globally unique (symbol)
items one or more data elements, defined by .com_kx_rest.reg.data (table)

registers an object, which can then be a used as the datatype of an input parameter, request body, or output.

An example to define an object that contains another object, and an endpoint that takes the containing object
as input, and returns the nested one:

28 /32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

.rest.reg.object[nestedObj;
.rest.reg.data[propl;6h;1b;0#0Ni; "property 1"],
.rest.reg.data[prop2;1ilh;ib;0# ;""],
.rest.reg.data[prop3;0h;ob; ("v1i";"v2");""],
.rest.reg.data[prop4;11lh;0b;1# a_value;""]]

.rest.reg.object[containerObj;
.rest.reg.data[id;-6h;0b;100;"id"],
.rest.reg.data[name;10h;0b;"xyz";"a name"],
.rest.reg.data[properties; nestedObj;0b;.rest.reg.default nestedObj;

"A nested object"]]

.rest.register[post;"/nested";
"demonstrates nested object";
{x[data] properties}; // Returns nested object
.rest.reg.body[containerObj;0b;.rest.reg.default containerObj;
"One or more container objects"],
.rest.reg.output[nestedObj;1b;"Resulting object"]]

Define the output of an endpoint

.com_kx_rest.reg.output[typ;isReq;dscr]

Where
typ name of object, defined with .com _kx rest.reg.object (symbol)
isReq whether output is required (bool)
dscr human-readable description (string)

defines the output of the endpoint.

Register an endpoint

.com_kx_rest.register[op;path;dscr;fn;params]

Where
op REST operation, typically one of get, post, put, or delete (symbol atom)
path path: supports variables using {var} syntax (e.g. "/users/{id}")

29 /32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

(string)

dscr human-readable description (string)

fn handler function (fn) see below

params one or more user input parameter definitions, or empty list

if no parameters are defined, see .com_kx_rest.reg.data (dict|table)

registers an endpoint

.rest.register[get;"/customers/{id}";
"Returns one or more customers by their IDs";
{[id] select from customers uid in id};
.rest.reg.data[" id;6h;1b;0;"0One or more customer IDs"]]

Handler function:

® if the function is defined with arguments named as the keys or columns of (or if
has only a key or column) then the function is variadically invoked with its arguments mapped
from the request input

* otherwise, the function is invoked as a unary on a dictionary:

op operation of the endpoint (symbol)
path path of the endpoint (string)
arg input parameters (dict)
as defined by params argument of .com_kx rest.register
rawArg input parameters as received in the request, without parsing (dict)
data value of processed body, typically a dictionary

if the body is of an object type, but can be of any type
as specified in call to .com_kx_rest.reg.body

rawData raw kdb+ form of the request body (if present) (any)

hdr HTTP headers as received (dict)

and returns one of

* a kdb+ data structure (typically a dictionary or a table), serialized to JSON by the framework

¢ result of the function, which gives the handler control over the HTTP
status code, and content type of the response (available with release 1.0.0)

* result of the function, which gives the handler total control over
the response

In the event of a problem (possibly with input) the handler must call to signal an
error.

Construct and return endpoint’s HTTP response

30/32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

.com_kx rest.util.httpResponse[code;headers;cbt]

Where
code HTTP status code (string)
headers headers dictionary: keys and values are strings (dict)
cbt Content body, encoded according to Content-Type set in headers
(string)

returns endpoint’s HTTP response, allowing control over the HTTP headers.

When this function is used, the handler must set the proper header and encode

accordingly.

Constructs and return endpoint’s HTTP response given HTTP status code

.com_kx_rest.util.response[code;cnttype;cnt]

Where
code HTTP status code (e.g. "201") (string)
cnttype content type (one of the keys of ".h.ty) (symbol)
cnt content body, already encoded according to cnttype (string)

returns the endpoint's HTTP response.
Use this function when you need to control the HTTP status code, as well as the type of the content.

If the success status code is 200 and the content type is JSON, the endpoint handler can return its result
directly (e.g. dict or table); the framework will encode this as JSON and return it along with 200 status code.

Signal an error

.com_kx_rest.util.throw[msg;subj]

Where

31/32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

KDB-X Public Preview 2025-10-17

msg error message (string)
subj subject of the error,e.g. names of input parameters (string)

signals an error formatted as

Use this function in an endpoint handler to signal an error in a format that distinguishes between the subject
of the error, and the error message itself.

32/32 | ©2025 KX. All Rights Reserved. KX® and kdb+ are registered trademarks of KX Systems, Inc., a subsidiary of KX Software Limited.

