Querying data using qSQL with PyKX

This page explains how to query your data with PyKX using qSQL.

Querying tables using qSQL

Create a sample table:

Python

Copy
>>> import pykx as kx
>>> trades = kx.Table(data={
        'sym': kx.random.random(100, ['AAPL', 'GOOG', 'MSFT']),
        'date': kx.random.random(100, kx.q('2022.01.01') + [0,1,2]),
        'price': kx.random.random(100, 1000.0
    })

>>> # Assign the table to a named object in q memory to allow name based query later
>>> kx.q['trades'] = trades

Query a table, by name, using qSQL:

Python

Copy
>>> kx.q('select from trades')
pykx.Table(pykx.q('
sym  date       price   
------------------------
GOOG 2022.01.02 805.0147
AAPL 2022.01.03 847.6275
AAPL 2022.01.03 329.8159
GOOG 2022.01.02 982.5155
MSFT 2022.01.02 724.9456
..
'))

Query a pykx.Table passing it as an argument:

Python

Copy
>>> kx.q('{select from x}', trades)
pykx.Table(pykx.q('
sym  date       price   
------------------------
GOOG 2022.01.02 805.0147
AAPL 2022.01.03 847.6275
AAPL 2022.01.03 329.8159
GOOG 2022.01.02 982.5155
MSFT 2022.01.02 724.9456
..
'))

Passing multiple arguments:

Python

Copy
>>> from datetime import date
>>> kx.q('{[x;y] select from trades where date = x, price < y}', date(2022, 1, 2), 500.0)
pykx.Table(pykx.q('
sym  date       price   
------------------------
GOOG 2022.01.02 214.9847
AAPL 2022.01.02 126.2957
AAPL 2022.01.02 184.4151
AAPL 2022.01.02 217.0378
GOOG 2022.01.02 423.6121
..
'))

Next steps

Now that you have learnt how to query your data using q you may be interested in other methods for querying your data:

  • If you want to query your data in a more Python-first way follow the guide here.

  • If you wish to query your data using SQL, you can follow the introduction to this functionality here.

  • To learn how to make your queries more performant following the tips and tricks here.

For some further reading, here are some related topics:

  • If you don't have a historical database available see here.

  • To learn about creating PyKX Table objects see here.